ADDENDUM 1 TO RESOURCE CONSERVATION AND RECOVERY ACT (RCRA) FACILITY INVESTIGATION REPORT FOR IRP SITES NO.17, NO.18, AND NO.21

VOLUME II APPENDICES A-L

148th FIGHTER GROUP MINNESOTA AIR NATIONAL GUARD DULUTH AIR NATIONAL GUARD BASE DULUTH, MINNESOTA

OCTOBER 1995

19960509 127

HQ ANG/CEVR ANDREWS AFB, MARYLAND

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE -

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington releadourater's Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204. Arlington, 7.4. 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (07.04-0188) Washington, 07. 20503.

Davis Fighway, suite 1204 Minington, via 222024302,			
1. AGENCY USE ONLY (Leave blank)	OCTOBER 1995	Facilities Inve	Stigation Report
4. TITLE AND SUBTITLE Addendum 1 to Resource Conse Facility Investigation Report for Duluth ANG, Duluth, MN 6. AUTHOR(S) N/A			5. FUNDING NUMBERS
7. PERFORMING ORGANIZATION NAME(OPTECH San Antonio, Texas	S) AND ADDRESS(ES)	v ee e	8: PERFORMING ORGANIZATION REPORT NUMBER 1308-101-39
REPORT OUT			Form 400 (1966) 1875 N. H. 18754 (1968)
9. SPONSORING/MONITORING AGENCY ANGRC/CEVR 3500 Fetchet Ave Andrews AFB, MD 20331-5157			10. SPONSORING / MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES			
(高) 15 1 (4) (4 (4) (4) (4) (4) (4) (4) (4) (4)	And the second of the second o		
12a. DISTRIBUTION / AVAILABILITY STAT	EMENT		12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited		en e	
ting, Anti-Park in Edita 1979 Programme	appendices A-L. This report p 4, October 1994, and May 19 esota Pollution Control Agen h recommendations for furth a all three sites and a Correct	oresents the results of at IRP sites 1' cy (MPCA) responser investigations ive Measures St	lts of the investigation 7, 18 and 21, located at the onded to the findings of the at these sites. The results
·····································	$\frac{1}{2} \left(\frac{1}{2} \right) \right) \right) \right)}{1} \right) \right) \right)}{1} \right) \right) \right)} \right) \right) \right) \right) \right) \right) \right) \right) \right) \right)}$	***	A CONTRACTOR COMPLETE STATE OF THE STATE OF
14. SUBJECT TERMS		1	
			RCRA): 718 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. Unclassified		SECURITY CLASSIFIC OF ABSTRASTIED	ATION 20. LIMITATION OF ABSTRACT none

ADDENDUM 1 TO RESOURCE CONSERVATION AND RECOVERY ACT (RCRA) FACILITY INVESTIGATION REPORT FOR IRP SITES NO.17, NO.18, AND NO.21

VOLUME II APPENDICES A-L

148th FIGHTER GROUP MINNESOTA AIR NATIONAL GUARD DULUTH AIR NATIONAL GUARD BASE DULUTH, MINNESOTA

OCTOBER 1995

Prepared For

HQ ANG/CEVR ANDREWS AFB, MARYLAND

Prepared By

Operational Technologies Corporation 4100 N.W. Loop 410, Suite 230 San Antonio, Texas 78229-4253 (210) 731-0000

APPENDIX A STATEMENT OF WORK

SECTION A.1 INTRODUCTION

The scope of work of the RCRA Facility Investigation conducted at the Minnesota Air National Guard Base, Duluth, Minnesota is outlined in the final permit for a hazardous waste storage facility issued to the Minnesota Air National Guard (ID#MND0007773341) in September, 1990 by the Minnesota Pollution Control Agency. A copy of the final permit is presented in Appendix A of the RCRA Facility Investigation of Solid Waste Management Units (OpTech, 1992). A copy of the Request for Cost Proposal and Statement of Work for the Addendum 1 to RCRA Facility Investigation for Sites No. 17, 18, and 21 is presented as follows.

DEPARTMENTS OF THE ARMY AND THE AIR FORCE

NATIONAL GUARD BUREAU

5109 LEESBURG PIKE, FALLS CHURCH, VIRGINIA 22041-3201

22 June 1993

JUN 2 8 1993

NGB-AQC-E (Catia Ellsworth)

OPTECH

Request for Cost Proposal, Contract DAHA90-91-D-0002,

D.O. 0001, Addendum #1, IRP Services, Duluth ANG,

Minnesota

OPTECH, INC. 4100 N.W. LOOP 410 SUITE 230 SAN ANTONIO, TX 78229-4253

Enclosed is the Statement of Work for "Addendum #1, for Services, for Duluth, Minnesota".

Please prepare a cost estimate for this effort with any necessary backup material that may be necessary to substantiate your costs.

Period of performance for this effort is 9 months from the official Notice to Proceed.

- a. DIRECT LABOR: Indicate your rationale for the mix of labor categories and skill levels to be employed and the number of hours per category proposed. Include also all subcontracted hours with the same rationale.
- TRAVEL: Although the delivery order will indicate a "not to exceed" amount, please provide an estimated total travel cost, to include number of trips. Proposed travel should indicate a complete breakdown of each trip: origin and destination, per diem costs, rental car costs, airfare, number of travelers, labor categories of travelers.
- If costs other than direct labor and OTHER COSTS: travel are involved, please provide a complete breakdown and justification for those costs. Example: duplication costs should be supported by number of copies, number of pages, cost per page, etc.

Please forward your cost proposal not later than 30 Jun 93. If you have questions, please contact Catia Ellsworth at (703)756-8939.

MARY ELLEN LEWIS

h Mulsone MAJ. NGB.

Contracting Officer

Enclosure

Contract No. DAHA90-91-D-0002 Delivery Order No. 0001 IRP Services for Duluth ANG, MN

ADDENDUM # 1 TO THE STATEMENT OF WORK

Date: 10 Jun 93

Modify the Statement of Work (SOW) as follows, specifically reference Tasks 2, 3, and 4 and Table 1:

- l. Task 2 The Contractor shall write an addendum to the existing Facility Investigation Work Plan reflecting the additional field work requested by the Minnesota Pollution Control Agency (MPCA) [re MPCA ltr dated 9 Dec 92] and validated by ANGRC/CEVR in their April 1993 letter of response. "Draft" and "Final" RFI Workplan Addendums will be produced and considered as Task 2A and 2B respectively (Deliverables 1Al and 1Bl).
- 2. Task 3 The Contractor shall perform all work as outlined in the addendum to the existing Facility Investigation Work Plan, to include:
- a. That work required to define the areal extent of SVOCs and TPH contamination at Site # 17.
- b. An additional round of soil sampling to confirm the results of the existing RFI Report in the area of concern identified in the Jacobs Engineering Report, re Site #s 18 and 19.
- c. That work required to define the areal extent of VOCs, SVOCs, 4,4-DDD, metals and TPH in Site # 21 sediments and soils; periodic sampling of the associated site groundwater for VOCs and Barium, and installation, development and sampling of one additional downgradient monitoring well to determine the downgradient extent of TCE. Said Field Work shall be considered as Task 3A.
- Task 4 The Contractor, following completion of all work outlined in the addendum to the existing Facility Investigation Work Plan, shall prepare an Amendment (supplement) to the existing RFI Report documenting the results of the field investigation. This supplemental report shall be prepared in "draft" [Task 4A] and "final" [Task 4B] forms and shall be identified as Deliverables 1A2 and 1B2 in Table 1 to the existing SOW. Based upon the results documented in the existing RFI Report and the associated supplemental report, the Contractor shall also prepare appropriate "draft" and "final" No Further Action Decision Documents (NFADDs) for Site #s 17, 18, 19, 21, and 22 or appropriate recommendations for initiation of a Corrective Measures Study Report as outlined in Task 5 of the existing SOW. If said reports results in the preparation of any NFADDs, they shall be prepared (under separate cover) and considered to be part and parcel of Deliverables 1A2 and 1B2. In addition to the above, the Contractor shall plan to attend one (1) Review Meeting (Task 4C) to discuss comments from the MPCA regarding the "Draft RFI Report Amendment". This meeting is necessary to incorporate any regulatory agency comments/suggestions into the final report.

- 4. The Contractor shall submit to NGB Monthly Progress Reports (Task 4D) as outlined in paragraph 4.0 of the existing SOW. For the purposes of this SOW Addendum said reports shall be considered as Deliverable 4A. It is estimated that the period of performance for the tasks oulined in this SOW Addendum shall be nine (9) months from NTP.
- 5. Table 1 Table 1 is hereby modified to include the following Deliverables:
 - a. Deliverable 1A1 Draft RFI Workplan (Addendum)
 - b. Deliverable 1B1 Final RFI Workplan (Addendum)
 - c. Deliverable 1A2 Draft RFI Report (Amendment) & Associated NFADDs
 - d. Deliverable 1B2 Final RFI Report (Amendment) & Associated NFADDs
 - e. Deliverable 4A Monthly Progress Reports

Time allowed for Tasks and Copies Required for Tasks 2A and 4A are to be the same as those listed for Deliverable 1A; for Tasks 2B and 4B the same as those listed for Deliverable 1B; and for Task 4D the same as that listed for Deliverable 4. Note 1 applies to Deliverables 1Al and 1A2, Note 2 applies to Deliverables 1Bl and 1B2, and Note 3 applies to Deliverable 4A.

DEPARTMENT OF THE AIR FORCE

AIR NATIONAL GUARD READINESS CENTER ANDREWS AIR FORCE BASE, DC 20331-6008

FROM: CEVR

- Modification of Contract # DAHA90-91-D-0002, Delivery Order #0001 IRP Services for the ANG, Duluth, MN Statement of Work
- TO: NGB-AQC-E (Ms Catia Ellsworth)
 - 1. Request the following modifications be made to the subject Statement of Work (SOW), specifically reference Tasks 2, 3, and 4 and Table 1:
 - a. Task 2 The Contractor shall write an addendum to the existing Facility Investigation Work Plan reflecting the additional field work requested by the Minnesota Pollution Control Agency (MPCA) [re MPCA ltr dated 9 Dec 92] and validated by ANGRC/CEVR in their April 1993 letter of response.
 - b. <u>Task 3</u> The Contractor shall perform all work as outlined in the addendum to the existing Facility Investigation Work Plan, to include:
 - 1) That work required to define the areal extent of SVOCs and TPH contamination at Site # 17.
 - 2) An additional round of soil sampling to confirm the results of the existing RFI Report in the area of concern identified in the Jacobs Engineering Report, re Site #s 18 and 19.
 - 3) That work required to define the areal extent of VOCs, SVOCs, 4,4-DDD, metals and TPH in Site # 21 sediments and soils; periodic sampling of the associated site groundwater for VOCs and Barium, and installation/development/sampling of one additional downgradient monitoring well to determine the downgradient extent of TCE.
 - c. Task 4 The Contractor, following completion of all work outlined in the addendum to the existing Facility Investigation Work Plan, shall prepare a supplement to the existing RFI Report documenting the results of the field investigation. This supplemental report shall be prepared in "draft" and "final" forms and shall be identified as Deliverables 1A1 and 1B1 in Table 1 to the existing SOW. Based upon the results documented in the existing RFI Report and the associated supplemental report, the Contractor shall also prepare appropriate "draft" and "final" No Further Action Decision Documents (NFADDs) for Site #s 17, 18, 19, 21, and 22 or appropriate recommendations for initiation of a Corrective Measures Study Report as outlined in Task 5 of the

existing SOW. If said reports result in the preparation of any NFADDs, they shall be prepared (under separate cover) and considered to be part and parcel of Deliverables 1A1 and 1B1.

- d. <u>Table 1</u> Table 1 is hereby modified to include the following Deliverables:
- 1) Deliverable 1A1 Draft Supplemental Facility Investigation Report and NFADD's.
- 2) Deliverable 1B1 Final Supplemental Facility Investigation Report and NFADD's.

Time allowed for Task and Copies Required are to be the same as those listed for Deliverables 1A and 1B. Notes 1 and 2 apply to Deliverables 1A1 and 1B1 respectively.

2. Refer to Atch 1 for the Government Estimate for the additional work outlined in paragraph 1 to this letter. Any questions concerning this request for modification of the existing SOW should be directed to the ANGRC/CEVR POC and COR for Delivery Order # 0001, Lt.Col., Michael C. Washeleski, at DSN: 858-8144 or Comm (301) 981-8144.

GARY L. HINKLE, Chief Installation Restoration Prg Br Environmental Division

1 Atch: Gov't Estimate

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX B PROCEDURES AND PROTOCOLS

THIS PAGE INTENTIONALLY LEFT BLANK

PROCEDURES AND PROTOCOLS

FIELD INVESTIGATION STRATEGY

Mobilization Activities

Mobilization included efforts by the Minnesota Air National Guard (MNANG) and its contractors to prepare for field activities. All field personnel were equipped with appropriate personal safety equipment, safety training, and field monitoring equipment.

Prior to any drilling activities, the Base Civil Engineer was consulted for utility locations. A general review of underground utility maps for each area was conducted. Digging Permits were completed and submitted to the appropriate Base personnel for approval.

Huntingdon Engineering & Environmental Corporation, of Duluth, Minnesota was retained as the drilling contractor for drilling boreholes and for installation of the monitoring well. The selected drilling contractor mobilized personnel and equipment that met or exceeded MNANG and the Minnesota Department of Health (MDH) requirements.

Southern Petroleum Environmental Laboratory, Inc. of Houston, Texas was retained as a qualified CLP laboratory to perform analysis. Provisions were made for proper sample containers, labels, chain-of-custody forms, sample stabilization and preservation, insulated sample shipping containers, and packing materials.

RREM, Inc., of Superior, Wisconsin was retained as the surveying contractor. All soil boring locations, soil sediment locations, and the monitoring well were surveyed. The elevations of the well and borings are recorded on the drilling logs in Appendix D.

Decontamination

A decontamination area was provided at the vehicle maintenance area. The drill rig and drilling equipment was decontaminated prior to mobilization to each site. Decontamination procedures involved thoroughly steam cleaning the drilling equipment, particularly the downhole tools such as augers, drill bits, and drill steel.

Decontamination stations were set up at each work site for decontamination of sampling equipment, well casing, and screens. All sampling equipment was decontaminated prior to each sampling event. Decontamination procedures involved washing sampler parts (split-spoon, hand auger, etc.) in water with Alconox soap, a potable water rinse, a thorough rinse with deionized water, and a final rinse with methanol.

SUBSURFACE INVESTIGATION

Twenty-four soil borings, four soil sediment samples, and one monitoring well were drilled and sampled at Duluth ANGB (CERCLA Sites 17, 18, and 21) to identify subsurface geologic and hydrogeologic conditions and to inspect for indications of contamination in the soil and groundwater. Soil borings, soil sediment samples, and the monitoring well were installed during

the period between July 10, 1994 and July 27, 1994 and again during the period between October 3, 1994 and October 7, 1994. All drilling at Site 17 and Site 21 was performed using hollow stem auger methods. Sampling at Site 18 was done with a hand auger.

The drilling program included 11 soil borings at Site 17, 2 hand augured soil borings at Site 18, and 11 soil borings, 4 soil sediment samples, and 1 monitoring well at Site 21. The sampling and analytical program is summarized in Tables 2.2, 2.3, 2.4, 2.5, 2.5. The soil borings were plugged back to surface with cement grout upon completion of the sampling. The monitoring well was completed with stainless steel screens and risers.

Borehole Logging and Sampling

An onsite geologist recorded the lithology during the drilling of each borehole. A field log recorded the following information for each well or boring:

Date.

Well or boring identification number and location.

Nominal hole diameter.

Name of driller and geologist.

Sampling method.

Depth interval from which each formation sample was taken.

Number of SPT blows.

PID readings.

Reference elevations for all depth measurements.

Depth of each change of stratum.

Description and classification of the material encountered according to the Unified Soils Classification System, or standard rock nomenclature, as appropriate.

Depth at which groundwater is first encountered while drilling.

Depth of complete well or borehole.

Location of any fractures, joints, cavities, weathered zones identified.

Depth of any grouting or sealing, and the amount of cement and/or bentonite used.

Depth and type of well casing.

Description of well screen and riser pipe.

Depth to water before development begins.

Depth to top of screen.

Static water level upon completion of the well and after development.

Pertinent construction details.

Description of any difficulties encountered during well drilling or construction.

Documentation of PID, pH, and specific conductance meter calibration.

Temperature, ph, and specific conductance measurements for initial groundwater sampling and for subsequent samples.

Signatures of those performing the work.

Soil from the monitoring well boring was collected with decontaminated split spoon samplers for PID measurements, GC analysis, and lithology descriptions only.

Drilling and Sampling Procedures

Soil Borings

Soil borings were installed at CERCLA Sites 17, 18, and 21. The soil borings at Sites 17 and 21 were drilled with a rig equipped with continuous flight 6" x 4-1/4" hollow-stem augers. The soil borings at Site 18 were drilled with a hand auger. Decontaminated auger sections were used on each borehole. Decontamination of all the augers used at a site was performed before mobilizing to each site. Soil samples were collected and field screened at five foot intervals. A stainless steel California-style, split spoon sampler equipped with four 6-inch long, 2.5-inch diameter brass sleeves was used for sampling immediately below the surface and immediately above the water table. These samples were submitted for laboratory analysis. The depth of the soil test borings was limited to the depth where saturated alluvium was encountered. Actual sample depths submitted for laboratory analysis are discussed in Section 3 and shown on the borehole logs included in Appendix D. Soil collected in the brass sleeves that was not needed for laboratory analysis was used for PID headspace readings, GC analysis, and for lithology descriptions. The California-style split spoon sampler was decontaminated before each sampling event. New brass sleeves were used for each sampling event.

Upon completion of the sampling, the borehole was grouted back to the surface with Portland cement. Each borehole was staked for coordinate location and elevation by the surveyor.

Monitoring Well

Monitoring well 021-026MW was installed at CERCLA Site 21. The monitoring well was drilled with a drill rig equipped with continuous flight 8" x 6-1/4" hollow stem augers. Decontaminated auger sections were used on the borehole. Decontamination of all the augers used at a site was performed before mobilization. A split spoon sampler was employed at a point just below the surface and at 5-foot depth intervals thereafter. Sample depths are discussed in Section 3 and shown on the borehole logs included in Appendix D. Soil samples were collected at these points for headspace readings with a PID, GC analysis, and for lithology descriptions. Split spoon samplers were decontaminated before each sampling event.

The monitor well was constructed with 2-inch diameter, stainless steel, flush coupled and threaded casing, and wire wrapped stainless steel screen. The screen slot size was 0.010 inch. All pipe was decontaminated before placing it into the well bore. The well bore was completed as follows:

The well was drilled to a total depth of approximately 12-feet into the saturated zone.

The bottom 2-feet of the well bore was packed with sand.

A 10-foot wire wrapped stainless steel screen with bottom cap and stainless steel riser of an appropriate length above the screen was placed on top of the sand in the well bore.

Due to well construction restraints, the top of the screened interval was set coincident with the measured groundwater depth.

A tremie pipe was used to place sand around the well screen and riser up to a point approximately 5-feet below ground level.

A 2-foot bentonite seal was set above the sand pack and approximately 2-foot of cement was brought back to surface.

A steel protective riser with a locking top was placed over the top of the well and three guard posts were installed around the well.

The well was developed by bailing the well with a decontaminated polyvinyl chloride (PVC) bailer until pH, temperature, and conductivity stabilized. Once the well had recovered, the water level was measured. A photograph of a water sample from the well was taken and the pH, temperature, and conductivity were measured.

Approximately three well volumes were removed before sampling. Water samples were obtained using a decontaminated teflon bailer. The samples were collected in appropriate containers with preservatives if required and sent to the laboratory for analysis. Actual well completion diagrams are included in Appendix E. Monitor well coordinates and elevation were located by the surveyor.

Monitor Well Development and Groundwater Sampling

The monitor well was developed by gentle surging and bailing. The development water was collected in drums. Three existing wells were sampled along with the new monitor well. Wells were bailed with decontaminated PVC bailers until the water became clear, and the pH, specific conductance and temperature stabilized. Prior to collecting a water sample, three well volumes were bailed from each well and collected in drums. The wells was allowed to recover. Decontaminated teflon bailers were used to collect water samples.

Groundwater samples were collected from all monitor well at CERCLA Site 21 on July 25, 1994 and again on October 6, 1994. Photographs of water samples were taken and the pH and specific conductance were measured at each well. Samples were placed in coolers and chilled for shipment to the laboratory for analysis. A trip blank was included in each cooler sent to the laboratory. One duplicate sample was collected for every ten samples. One matrix spike and matrix spike duplicate sample was collected for every twenty samples. One equipment rinseate blank sample was collected for every ten samples. One field blank sample consisting of deionized water was collected during each sampling episode. One field blank sample consisting of base tap water was collected during the October sampling round. Chain-of-custody records were maintained for all samples.

SURFACE INVESTIGATION

Surface Sediment Sampling Procedures

Surface sediment samples were collected at CERCLA Site 21. Sampling was conducted on July 26, 1994 and again on October 4, 1994. Samples were collected using a decontaminated stainless steel hand auger equipped with two 5-inch long, 2-inch diameter brass sleeves to minimize the loss of volatile constituents. The brass sleeves were sealed with aluminum foil, Teflon tape, and plastic caps. The sleeves were then placed in coolers and chilled for shipment to the laboratory for analysis. A trip blank was included in each cooler sent to the laboratory. One duplicate sample was collected for every ten samples. One matrix spike and matrix spike duplicate sample was collected for every twenty samples. Chain-of-custody records were maintained for all samples.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX C

BORING LOGS

THIS PAGE INTENTIONALLY LEFT BLANK

BORING LOGS

INTRODUCTION

Boring log diagrams have been compiled for each borehole location drilled during this study. Diagrams are presented in numerical order within each site. The borehole identification is keyed to the site number (017-01BH), borehole (BH), or monitoring well designation (MW). The diagrams combine in one page both a verbal and graphical illustration of the lithology encountered during drilling, water level data encountered during drilling and surveyed elevation of the ground surface at the borehole location.

Drilling records are organized sequentially by number for boreholes and the monitor well. The borehole identification is keyed to the site number and borehole type such as soil boring for acoustic topography survey (BH) or monitoring well designation (MW).

The soil core was scanned for volatile organic compounds prior to describing the soil core and results were recorded on the boring logs. As soon as the soil core was removed from the sampling assembly, a portable OVM Model 580B photoionization detector was used to monitor for volatile organic compounds and a portable HMX251 explosimeter was used to monitor the lower explosive limit and percent oxygen.

The sample description includes the primary major component or components, color, consistency, relative density, texture, moisture and observations of each distinct lithologic change encountered. Each distinct lithologic change that was encountered was defined by the Unified Soil Classification System (USCS) which is based on texture, sorting of clasts and plasticity of soils. The color was determined by visually comparing the color of the sample with the Munsell Soil Color Charts. The texture was visually estimated and described suing the following semi-quantitative adjectives:

<u>Adjective</u>	Estimated Percent of Total Sample
Trace	0 - 5
Little	5 - 12
Some	12 - 35
And	35 - 50

These adjectives precede the lithology, such as *little* clay (5-12% clay) or *some* sand (12-35% sand).

The classification: sand, granule, cobble, and boulder, was assigned using the grain-size scale given in the USCS. Gravel clast sizes, boulder, cobble, and pebbles, were measured using a steel tape in the field. On the original field lithologic logs, clasts that were 4 inches or greater in size and those that were from 2 to 4 inches in size were reported as boulders and cobbles, respectively.

The fine fraction was described using one of the following terms: silt, silt and clay, or clay. These are field terms and take into account plasticity as well as grain size. The distinction between clay and silt was based on how easily a small piece of soil could be rolled into a thin ribbon. Clay can easily be smeared into a ribbon when wet while silt is smeared with more difficulty. A dry sample of clay is difficult to crush with fingers while a dry sample of silt is more easily crushed.

LITHOLOGIC LOGS

Lithologic symbols are derived and generalized from the USCS shown in Figure C.1.

In the boring logs that follow, the column headings have the following meanings:

Depth:

Depth in feet below surface.

Blows:

The number of blows required to drive a split-spoon sampler an additional 24 inches into the ground beyond the

initial 6 inch set.

Field Headspace:

The reading of photo-ionizable compounds detected in the

soil sample by a photo-ionization detector.

Samples:

The interval of sample cored below land surface.

Percent Recovery:

The percentage of sample recovered in the split-spoon

sampler per sampling run.

USCS:

Unified Soil Classification System based on texture, sorting

of clasts and plasticity of soils.

REFERENCES

- Casagrande, A., 1948. Classification and identification of soils. Transactions of the American Society of Civil Engineers 113:901.
- Folk, R.L., 1980. Petrology of Sedimentary Rocks. Hemphill Publishing Company. Austin, TX. p. 182.

THIS PAGE INTENIONALLY LEFT BLANK

KEY TO BORING LOG SYMBOLS

	UNIFIED S	OIL CLASSIFICAT	ΓΙΟΝ	SYS	TEM - ASTM D2487
	MAJOR DIV	ISIONS		BOL/ PHIC	DESCRIPTIONS
	GRAVELS	Clean gravels with	GW		Well-Graded Gravels, Gravel - Sand Mixtures
LS eve)	GIVAV DED	little or no fines	GP		Poorly Graded Gravels, Gravels - Sand Mixtures
S01	(More than 50% of coarse fraction is	Gravels with over	GM		Silty Gravels, Poorly Graded Gravel- Sand-Clay Mixtures
COARSE-GRAINED SOILS 0% Smaller Than #200 Sieve)	larger than the #4 sieve size.)	12% fines	GC		Clayey Gravels, Poorly Graded Gravel— Sand—Clay Mixtures
J-GR/	SANDS	Clean sands with	sw		Well-Graded Sands, Gravelly Sands
ARSE-G Smaller		little or no fines	SP		Poorly Graded Sands, Gravelly Sands
%09<)	(More than 50% of coarse fraction is	Sands with over	SM		Silty Sands, Poorly Graded Sand-Silt Mixtures
	smaller than the #4 sieve size.)	12% fines	SC		Clayey Sands, Poorly Graded Sand- Clay Mixtures
Sieve)	CIT MC AN	ID GLAVG	ML		Inorganic Silts and Very Fine Sands, Silty or Clayey Fine Sands
SOILS #200 Si	SILTS AN (Liquid limit	t less than 50)	CL		Inorganic Clays of Low to Medium Plasticity: Gravelly, Sandy or Silty Clays; Lean Clays
	-	,	OL		Organic Clays and Organic Silty Clays of Low Plasticity
NE-GRAINED Smaller Than	SILTS AN	D CLAYS	МН		Inorganic Silts, Micaceous or Diatomacious Fine Sandy or Silty Soils, Elastic Silts
FINE-GRAINED		reater than 50)	СН		Inorganic Clays of High Plasticity Fat Clays
FI]			он		Organic Clays of Medium to High Plasticity, Organic Silts
	HIGHLY ORG	ANIC SOILS	Pt		Peat and Other Highly Organic Soils

Sample retained for on-site screening.

Sample prepared for laboratory analysis.

PID Photo-Ionization Detector readings (ppm).

ND Parameter Not Detected

NA Measurement Not Applicable, Groundwater Not Detected

- No Measurement Performed

NR No Sample Recovery

Asphaltic Concrete
Portland Cement Concrete
Cement Grout
Boulders or Bedrock

DRAFT FIGURE C.1

F\FORMS\KEYLOG2

KEY TO BORING LOG SYMBOLS

Duluth Air National Guard Base Duluth, Minnesota

1994

PTEC

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 017-10BH

Project No.:

1308-101

Logged By:

Kathryn Pritchett

Drilling Co.:

Huntingdon Engineering and Environ.

Driller:

Jim Saugestad/Steve Sterk

Date Drilled:

07/19/94

Sampling Method:

Stainless-Steel Split-Spoon Sampler

Depth Drilled:

10.0 ft.

Depth To Water:

4.5 BLS

Date Measured:

07/19/94

Surface Elevation:

1412.13 ft.

Drill	ing Me	ethod:		Hollow-S	tem Auger	Surface Elevation. 14	12.13 11.			
				J			FI	ELD SC	REENI	NG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION O	F MATERIALS	PID	АТНА	BTEX	Benzene
Dep	Big	% R	Sa	-5			(ppm)	(ppm)	(ppb)	(ppb)
_	2 4 10 6	40			Silt, some peat, dark yellowi moist-dry.	sh to grey brown,		-	-	-
5 —	2 5 6 100	70			Silt and peat, little clay, trace clasts, medium grey brown to firm, soft, moist-wet. Silt, trace to little clay, little cobble-sized clasts, dark yellowet.	o dark yellowish-brown,	0	0	ND	ND
10 -	43 23 29 25	75			Silt, trace to little sand, little clay, cobble-sized clasts, dark wet. Boring Termina - Borehole Abandoned by Proplan.	ted at 10 ft.	0	0.3	ND	ND

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 017-11BH

Project No.:

1308-101

Logged By:

Kathryn Pritchett

Drilling Co.:

Huntingdon Engineering and Environ.

Driller:

Jim Saugestad/Steve Sterk

Date Drilled:

07/19/94

Sampling Method:

Stainless-Steel Split-Spoon Sampler

Depth Drilled:

10.0 ft.

Depth To Water: Date Measured:

5.0 BLS

07/19/94

Surface Elevation:

1410.77 ft.

1	ing Me			//19/94 [ollow-Si	tem Auger	Surface Elevation: 1	410.// 11.			
							FI	ELD SC	REENI	NG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION O	F MATERIALS	PID	АТНА	BTEX	Benzene
Dep	BIG	% R	Sa	Ŀ			(ppm)	(ppm)	(ppb)	(ppb)
_	3 6 4 4		X		Silt, little sand, trace to little pebble-sized clasts, dark yell moist-dry, roots. Silt and peat, trace to little cl soft, moist.	owish-brown, soft,	0	0	25	ND
5 -	1 3 3 6	60	X		Silt and peat, little clay, trace clasts, medium-grey to olive	e gravel, pebble-sized brown, soft, moist-wet.	0	0	ND	ND
- - 10 -	2 6 4 4	75	X		Silt, some sand, little gravel, clasts, dark yellowish-brown,	soft, wet.	0	0	ND	ND
_					Boring Termin Borehole Abandoned by Pro	ated at 10 ft. ocedures Stated in Work				

DULUTH RFI

DULUTH, MINNESOTA, SITE 17

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 017-12BH

Project No.:

1308-101

Logged By:

Kathryn Pritchett

Drilling Co.:

Huntingdon Engineering and Environ.

Driller:

Jim Saugestad/Steve Sterk

Date Drilled:

07/19/94

Sampling Method:

Stainless-Steel Split-Spoon Sampler

Depth Drilled:

10.0 ft.

Depth To Water:

4.5 BLS

Date Measured:

07/19/94

Surface Elevation:

1411.04 ft.

Drilli	ing Me	etnoa:	H	ronom-2	tem Auger				
£.	1.5	ery	S	ည		FI	ELD SC	REENI	NG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА	BTEX	Benzene
Dep	BIG	% R	Sa	Ğ		(ppm)	(ppm)	(ppb)	(ppb)
	5 24 14 9	40			Silt, trace clay, little sand, little gravel, pebble-sized clasts, loose, moist-dry, roots, no odor.	0	0	21	ND
5 —	6 7 — 11 12	70			Silt and peat, little to some clay (olive color), medium grey to olive brown, soft, firm, moist-wet, wood fragments, no odor. Silt and sand, little gravel, trace clay, pebble-sized clasts, dark yellowish to grey brown, firm, soft, wet, no odor.	0	0	20	ND
10 -	24 25 55 35	70			Sand and granule, some silt, little gravel, trace clay, pebble-sized clasts, dark yellowish-brown, loose, wet, no odor. Silt, trace clay, trace to little gravel, granule sized clasts, dark yellowish-brown, firm, wet-moist, no odor. Boring Terminated at 10 ft. Borehole Ababdoned by Procedures Stated in Work Plan.	0	0	25	ND

DULUTH RFI

DULUTH, MINNESOTA, SITE 17

$\mathbf{E} \mathbf{C}$

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 017-13BH

Project No.:

1308-101

Logged By:

Kathryn Pritchett

Drilling Co.:

Huntingdon Engineering and Environ.

Driller:

Jim Saugestad/Steve Sterk

Date Drilled:

07/18/94

Sampling Method:

Stainless-Steel Split-Spoon Sampler

Depth Drilled:

10.0 ft.

Depth To Water:

Date Measured:

7.0 BLS

07/18/94

Surface Elevation:

1412.04 ft.

L	Drilli	ng Me	thod:	H	[ollow-St	tem Auger					
I	£	F_	ery	S.	ပ			FI	ELD SC	REENI	NG
ł	Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION C	F MATERIALS	PID	АТНА	BTEX	Benzene
	Dep	BIG	% R	Sa	-			(ppm)	(ppm)	(ppb)	(ppb)
		2 5 8 7	90	X		Silt, little sand, little gravel, yellowish-brown, moist-dry,	cobble-sized clasts, dark roots.	-	-	ND	ND
	5 —	3 5 5 7	80			Peat, some silt, medium to d firm, moist-dry, wood fragm	ark grey brown, soft, nents, no odor.	-	-	ND	ND
		Construction of the constr		X							
	10	18 13 18 17	60			Silt, little to some sand, little clasts, dark yellowish-brown	, firm, soft, wet, no odor.	-	-	ND	ND
		e de deservaciones de la constanta de la const				Boring Termir - Borehole Abandoned by Pr Plan.	ocedures Stated in Work				
	_										

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 017-14BH

Project No.:

1308-101

Logged By:

Kathryn Pritchett

Drilling Co.:

Huntingdon Engineering and Environ.

Driller:

Jim Saugestad/Steve Sterk

Date Drilled:

07/19/94

Drilling Method. Hollow-Stem Auger

Sampling Method:

Stainless-Steel Split-Spoon Sampler

Depth Drilled:

10.0 ft.

Depth To Water:

7.0 BLS

Date Measured:

07/19/94

Surface Elevation:

1411.79 ft.

Drill	ing Me	ethod:	H	Iollow-S	tem Auger		·			
£.	9	ery	Sa	ic			FI	ELD SC	REENI	NG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION C	F MATERIALS	PID	АТНА	втех	Benzene
Dei	M	% R	Sa	Ö			(ppm)	(ppm)	(ppb)	(ppb)
	3 7 27 37	65	X		Silt, trace to little clay, little clasts, dark yellowish to grey	gravel, cobble-sized brown, loose, moist-dry.	0	0	21	ND
5 —	2 3 4 6	85			Peat, little to some silt, trace grey brown, firm, soft, mois	clay, medium to dark	0	0	ND	ND
10 -	5 6 5 13	60			Silt, trace clay, some gravel, cobble-sized clasts, dark yelled Boring Termine - Borehole Abandoned by Proplan.	owish-brown, firm, wet.	0	0	22	ND

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 017-15BH

Project No.:

1308-101

Logged By:

Kathryn Pritchett

Drilling Co.:

Huntingdon Engineering and Environ.

Driller:

Jim Saugestad/Steve Sterk

Date Drilled:

07/18/94

Sampling Method:

Stainless-Steel Split-Spoon Sampler

Depth Drilled:

10.0 ft.

Depth To Water:

7.0 BLS

Date Measured:

07/18/94

Surface Elevation:

1411.49 ft.

Drill	ing Mo	ethod:	H	lollow-St	tem Auger					
3	Ę.	ery	Ś	ပ			FI	ELD SC	REENII	NG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION C	F MATERIALS	PID	АТНА	BTEX	Benzene
Der	Ble	% R	Sa	Ē			(ppm)	(ppm)	(ppb)	(ppb)
	2 10 60 24	70			Silt and sand, some gravel, or yellowish to grey brown, loo		0	0	ND	ND
5 —	3 3 3 5	45			Peat, some silt, little clay, da soft, moist, no odor.	irk grey brown, firm,	0	0	ND	ND
10	10 17 11 6	35			Silt, some sand, some gravel yellowish-brown, firm, soft, Boring Termin	wet, no odor.	0	-	ND	ND
					- Borehole Abandoned by Pro Plan.	ocedures Stated in Work				

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 017-16BH

Project No.:

1308-101

Logged By:

Kathryn Pritchett

Drilling Co.:

Huntingdon Engineering and Environ.

Driller:

Jim Saugestad/Steve Sterk

Date Drilled:

07/18/94

Sampling Method:

Stainless-Steel Split-Spoon Sampler

Depth Drilled:

10.0 ft.

Depth To Water:

7.0 BLS

Date Measured:

07/18/94

Surface Elevation:

1411.63 ft.

	ing Me	ethod:		Iollow-S	tem Auger	Surface Dievation. 141	1.00 1			
							FI	ELD SC	REENII	NG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION C	OF MATERIALS	PID	АТНА	BTEX	Benzene
ă		%	S				(ppm)	(ppm)	(ppb)	(ppb)
_	2 20 26 26	75			Silt, little clay, trace to little clasts, medium to dark yellow moist-dry, roots, no odor. Silt and peat, little sand, med loose, moist-dry. Sand and silt, some granule, grey-brown, loose, moist-dry	lium to dark grey-brown, medium to dark	0	0	ND	ND
5 -	2 2 2 3 5	80	X		Peat, some silt, dark grey-br wood fragments.	own, firm, soft, moist,	0	-	ND	ND
10	2 4 9 15	75			Sand and silt, little to some g grey-brown, firm, soft, wet, Boring Termin - Borehole Abandoned by Pro Plan.	no odor. ated at 10 ft.	0	0	ND	ND

DULUTH RFI

DULUTH, MINNESOTA, SITE 17

OPTECH

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 017-17BH

Project No.:

1308-101

Logged By:

Kathryn Pritchett

Drilling Co.:

Huntingdon Engineering and Environ.

Driller:

Jim Saugestad/Steve Sterk

Date Drilled:

07/19/94

Sampling Method:

Stainless-Steel Split-Spoon Sampler

Depth Drilled:

10.0 ft.

Depth To Water:

Date Measured:

7.0 BLS

07/19/94

Surface Elevation:

1412.27 ft.

Drilli	ng Me	thod:	Н	[ollow-S	tem Auger				
3	.	ery	8	ပ		FI	ELD SC	REEND	NG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА	BTEX	Benzene
Der	Bl	% R	Sa	Ū			(ppm)	(ppb)	(ppb)
	6 14 14 10	75	X		Silt, trace clay, little gravel, cobble-sized clasts, dark yellowish-brown, firm, moist-dry.	0	0.6	ND	ND
					Silt, little to some granule, little coal fragments, trace clay, dark yellowish-brown, firm, moist-dry.				-
5 —	2 4 5 6	100	X		Peat, little silt, trace clay, mediun to dark grey brown, firm, soft, moist, wood fragments.	0	1.0	ND	ND
	1	100			Peat and silt, trace clay, trace gravel, pebble-sized	0	0.8	19	ND
10 —	2 2 3		X		clasts, light to dark grey to olive brown, soft, firm, wet. Boring Terminated at 10 ft.		0.8	19	ND
_					- Borehole Abandoned by Procedures Stated in Work Plan.			·	
			770000						
_									

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 017-18BH

Project No.:

1308-101

Logged By:

Kathryn Pritchett

Drilling Co.:

Huntingdon Engineering and Environ.

Driller:

Jim Saugestad/Steve Sterk

Date Drilled:

07/20/94

Sampling Method:

Stainless-Steel Split-Spoon Sampler

Depth Drilled:

10.0 ft.

Depth To Water:

1.0 BLS

Date Measured:

07/20/94

Surface Elevation:

1412.95 ft.

Drilling Method: Hollow-Stem Auger										
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS		FIELD SCREENING			
							PID	АТНА	BTEX	Benzene
Dep							(ppm)	(ppm)	(ppb)	(ppb)
_	6 12 32 12	70			Silt, trace clay, some sand, or loose, moist-dry, roots. Silt, trace clay, little to some cobble-sized clasts, dark yell	sand, some gravel,	0	1.0	ND	ND
5 - -	2 3 5 7	90			Peat, little to some silt, trace dark grey brown, soft, moist	to little clay, medium to -wet, wood fragments.	0	0.9	ND	ND
10 -	2 3 6 10	75			Silt and peat, little clay, trace olive brown, soft, wet. Silt, trace clay, trace to little gravel, pebble-sized clasts, dfirm, wet. Boring Termin - Borehole Abandoned by Pr Plan.	sand, little to some ark yellowish-brown, ated at 10 ft.	0	0.8	ND	ND

OPTEC

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 017-19BH

Project No.:

1308-101

Logged By:

Kathryn Pritchett

Drilling Co.:

Huntingdon Engineering and Environ.

Driller:

Jim Saugestad/Steve Sterk

Date Drilled:

07/20/94

Drilling Method:

Hollow-Stem Auger

Sampling Method:

Stainless-Steel Split-Spoon Sampler

Depth Drilled:

10.0 ft. Depth To Water:

1.0 BLS

Date Measured:

07/20/94

Surface Elevation:

1413.05 ft.

Drill	ing Me	ethod:	H	lollow-S	tem Auger				1744
ft.)	2,1	ery	Ses	္ပဲ		FIELD SCREENING			
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА	BTEX	Benzene
De	B	% F	Š	Ö		(ppm)	(ppm)	(ppb)	(ppb)
_	3 3 5 8	50			Silt, trace clay, trace sand, trace gravel, pebble-sized clasts, medium to dark yellowish to reddish-brown, loose, moist-dry, roots. Silt, some sand, little gravel, little granule, trace clay, pebble-sized clasts, dark yellowish to grey brown, soft, wet, slight petroleum odor.	25.1	0	ND	ND
5 —	2 3 7 10				Silt, little to some sand, little gravel, little granule, pebble-sized clasts, trace clay, dark yellowish to grey brown, soft, wet, slight petroleum odor. Silt, trace clay, trace to little gravel, cobble-sized clasts, dark yellowish-brown, firm, wet, no odor.	0	0	ND	ND
10 -	8 44 42 47				Silt, trace clay, little gravel, pebble-sized clasts, dark yellowish-brown, firm, wet. Boring Terminated at 10 ft. Borehole Abandoned by Procedures Stated in Work Plan. Diesel Fuel Apparent in Drill Cuttings.	0	0	ND	ND

DULUTH RFI

PTEC

DULUTH, MINNESOTA, SITE 17

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 017-20BH

Project No.:

1308-101

Logged By:

Kathryn Pritchett

Drilling Co.:

Huntingdon Engineering and Environ.

Driller:

Jim Saugestad/Steve Sterk

Date Drilled:

07/20/94

Sampling Method:

Stainless-Steel Split-Spoon Sampler

Depth Drilled:

10.0 ft.

Depth To Water:

2.0 BLS

Date Measured:

07/20/94

Surface Elevation:

1412.90 ft.

Drilli	ing Me	ethod:	H	Iollow-S	tem Auger					
Œ	F.4	ery	S				FI	ELD SC	REENII	NG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF	MATERIALS	PID	АТНА	BTEX	Benzene
Dep	BE	% R	Sa	-5			(ppm)	(ppm)	(ppb)	(ppb)
	3 7 5 9	75	X		Silt, trace clay, little to some s pebble-sized clasts, dark yellow moist-dry, no odor, roots. Sand and granule, some silt, tr clasts, dark yellowish to grey be wet.	wish-brown, loose, ace gravel, pebble-sized	0	0	ND	ND
5 -	3 2 2 2 2	75			Peat, some silt, trace to little ci grey brown, firm, soft, wet.	lay, medium to dark	0	0	ND	ND
10 -	5 12 19 27	70			Silt, trace clay, little gravel, trace clasts, dark yellowish-brown, for the Boring Terminate - Borehole Abandoned by Proce Plan.	ed at 10 ft.	0	0	ND	ND

OPTECH

OPERATIONAL TECHNOLOGIES
CORPORATION

LOG OF BORING 017-21BH

Project No.:

1308-101

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura

Date Drilled:

05/19/95

Sampling Method:

Split-Spoon Sampler

Depth Drilled:

6.0 ft. BLS

Depth To Water:

NA

Date Measured:

NA

Surface Elevation:

1410.97 ft.

	ing Me			5/19/95 [ollow Si	tem Auger	ger Surface Elevation: 1410.97 It.					
							FI	ELD SC	REENI	NG	
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION O	F MATERIALS	PID (ppm)	ATHA (ppm)	-	-	
_	1 2 2 2	55			Peat, moist black (10 yr 2/2)		0.0	-			
5 —	1 1 — 1 6	50	X		Peat, little clay wet to slightly	moist, gray to black.	0.0	0.0			
		i			Boring Termina	ated at 6.0 ft.					
10 -											
_	118										
15								•			
	, and the second										

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 017-22BH

Project No.:

1308-101

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura

Date Drilled:

05/17/95

Sampling Method:

Split-Spoon Sampler

Depth Drilled: Depth To Water:

6.0 ft.

Date Measured:

3.0 ft. BLS

05/17/95

Surface Elevation:

1412.26 ft.

Drill	ing Me	ethod:	H	ollow St	tem Auger				
Ţ	H.	ery	S	ပ		FIELD SCREENING			NG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА	-	-
Dep	Blo	% R	Sa	Gr		(ppm)	(ppm)		
	11 9 8 3	50	X		Peat, soft, moist.	0.0	0.0		
	3	5	\		Peat, soft, moist.	0.0	-		
5 -	$-\frac{1}{2}$		X		Boring Terminated at 6.0 ft.				
_					Botting Totalinated at 0.0 II.				
_									
_	1								
10 —									
_									
15	-								
				-					
_									
							!		

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 017-23BH

Project No.:

1308-101

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura

Date Drilled

05/17/95

Sampling Method:

Split-Spoon Sampler

Depth Drilled:

6.0 ft.BLS

Depth To Water:

3.0 ft.BLS

Date Measured:

NA

Surface Elevation

1412 97 ft

Date Drilled: Drilling Met		05/17/95 Hollow St	tem Auger	Surface Elevation:	1412.97 ft.			
			Augei		FI	ELD SC	REENII	NG
Depth (ft.) Blows/6"	% Recovery	Graphic	DESCRIPTION O	F MATERIALS	PID (ppm)	ATHA (ppm)	-	-
olg 6	% Re		Silt, little sand (medium to co (pebble), dry dark brown (7. Silt, trace clay, trace gravel brown (7.5 yr 4/4). Boring Termina	parse), trace gravel 5 yr 4/4). (pebble), moist, dark	(ppm) 0.0	(ppm) 0.0		

O P T E C

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 017-24BH

Project No.:

1308-101

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura

Date Drilled:

05/17/95

Drilling Method: Hollow Stem Auger

Sampling Method:

Split-Spoon Sampler

Depth Drilled:

10.0 ft.

Depth To Water:

3.0 ft.BLS

Date Measured:

NA

Surface Elevation:

1411.22 ft.

Drilling	Metno)a:	n	onow St	em Auger				
(3 F		ery	S	၁		FIELD SCREENING			NG
Depth (ft.)	DIOWS/0	% Kecovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА	-	-
Dep	bid %	% K	Sa	Ğ		(ppm)	(ppm)		
	2 5	50			Peat, some silt, trace sand (fine to medium), moist, black (10 yr 2/2).	0.0	0.0		
5 — 1	1 5 1 1 2	0 /				0.0	0.1		
4	4 1	0			Peat, some silt, trace sand (fine to medium), moist, black (10 yr 2/2). Silt, some to little sand (fine to coarse), wet, dark brown to black (10 yr 2/2).	0.0	0.0		
10 - 3	2		X		Boring Terminated at 10.0 ft.				
15 —									

O P T E C H

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 017-25BH

Project No.:

1308-101

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura

Date Drilled:

05/17/95

Sampling Method:

Split-Spoon Auger

Depth Drilled:

6.0 ft.

Depth To Water:

3.0 ft.BLS

Date Measured:

05/17/95

Surface Elevation:

1411.56 ft.

	ing Me			5/17/95 Ioilow St	tem Auger	Surface Elevation: 14	411.50 It.			
							FI	ELD SC	REENI	NG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION O	OF MATERIALS	PID (ppm)	ATHA (ppm)	-	-
	2 2 10 10	50			Peat, little sand, soft, moist,	·	0.0	0.0		
5 -	2 - 1 5	50	X		Peat, little sand, soft, moist,		0.0	0.0		
·_			i		Boring Termina	ated at 6.0 ft.				
_										
10 -										
15 —	_									
-										
_										
						<u></u> ·				

OPTECH

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 017-28BH

Project No.:

1308-101

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura

Date Drilled:

05/17/95

Sampling Method:

Split-Spoon Sampler

Depth Drilled:

6.0 ft.

Depth To Water:

3.0 ft.BLS

Date Measured:

NA

Surface Elevation:

1412.66 ft.

Drill	ing Me	ethod:	H	Iollow St	tem Auger					
3	F_	ery	S	ပ		FI	ELD SC	SCREENING		
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID (ppm)	ATHA (ppm)	•	-	
5 —	3 3 2 2 2	45 50			Silt, trace sand (coarse), trace gravel (up to cobble), very moist to wet, dark brown (7.5 yr 3/4). Silt, trace sand (coarse), trace gravel (up to cobble), very moist to wet, dark brown (7.5 yr 3/4). Boring Terminated at 6.0 ft.	0.0	0.0			
10 -					Boring Terminated at 6.0 it.					

OPTECH

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 017-29BH

Project No.:

1308-101

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura

Date Drilled:

05/19/95

Sampling Method:

Split-Spoon Sampler

Depth Drilled:

2.5 ft.

Depth To Water:

3.0 ft.BLS

Date Measured:

NA

Surface Elevation:

1412.15 ft.

	Drilled ing Me			5/19/95 Iollow St	tem Auger	Surface Elevation:	1412.15 ft.			
							FI	NG		
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION O	F MATERIALS	PID (ppm)	АТНА (ррт)	-	-
	1 3 3 4	50	X		Peat, some granular, very mo	oist, black (10 yr 2/2).	0.0	0.0		
5 —					Boring Termina	ated at 2.5 ft.				

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 017-30BH

Project No.:

1308-101

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura

Date Drilled:

05/19/95

Sampling Method:

Split-Spoon Sampler

Depth Drilled:

6.0 ft.

Depth To Water:

3.0 ft.BLS

Date Measured:

NA

Surface Elevation:

1411.31 ft.

Drilli	ing Me	thod:	H	follow St	tem Auger					
3	F_	ery	Ç,	ပ			FI	ELD SC	REENI	NG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION O	OF MATERIALS	PID	АТНА	•••	-
Q	<u> </u>	%					(ppm)	(ppm)		
_	7 23 9 3	45	X		Granular, moist, black fill m	aterial (10 yr 2/2).	0.0	0.0		
5 —	2 - 1 1	50	\times		Fill material, gravel (cobble) 2/2).	and silt, black (10 yr	0.0	0.0		
_					Boring Termin	ated at 6.0 ft.				
10 —					,					
15										
-						,				
_										

OPTECH

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 017-31BH

Project No.:

1308-101

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:
Date Drilled:

J. Tuura

05/19/95

Sampling Method:

Split-Spoon Sampler

Depth Drilled:

6.0 ft.

Depth To Water:

3.0 ft.BLS

Date Measured:

NA

Surface Elevation:

1411.94 ft.

	ing Me			ollow St	em Auger	Surface Elevation.	411.74 11.			
							FI	ELD SC	REENII	NG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION C	DESCRIPTION OF MATERIALS		ATHA (ppm)	-	-
-	1 1 1	0			No Recovery.		-	-		
5 —	1 2 2 2 2	50	X		Peat, silt, trace sand (fine), r		0.0	0.0		
					Boring Termina	ated at 6.0 ft.				
10 -						·				
- - 15 -										
-										

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 017-32BH

Project No.:

1308-101

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura

Date Drilled:

05/19/95

Sampling Method:

Split-Spoon Sampler

Depth Drilled:

2.5 ft.

Depth To Water:

2.0 ft.BLS

Date Measured:

05/19/95

Surface Elevation:

1412.37 ft.

	ing Me			Collow St	em Auger	Burrace Elevation.	1412.57 16.			
							FI	ELD SC	REENI	NG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS		PID (ppm)	ATHA (ppm)	-	-
	1 2 3 3	60			Peat, trace clay, wet, black (Boring Termina		0.0	0.0		
5 —	_									
10 -	-									
15										

PTECH

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 018-06BH

Project No.:

1308-101

Logged By:

Kathryn Pritchett

Drilling Co.:

Operational Technologies

Driller:

Jeff Blunt

Date Drilled:

10/05/94

Sampling Method:

Stainless-Steel Hand Auger

Depth Drilled:

2.5 ft. BLS

Depth To Water:

NA

Date Measured:

NA

Surface Elevation:

1412.72 ft.

	Drille ing Me			0/05/94 [and Au	ger	Surface Elevation:	1412.72 ft.			
							FI	ELD SC	REENI	NG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION O	F MATERIALS	PID	АТНА	BTEX	Benzene
Del	B	% H	S	Ü			(ppm)	(ppm)	(ppb)	(ppb)
					Silt, little clay, trace gravel, sand, cobble-sized clasts, dar moist.	trace sand, fine-grained k brown (10yr 3/3),				
	•	100					3.0	-	ND	ND
	•	100	X				3.0	-	ND	ND
5 —					Boring Termina	ated at 2.5 ft.				
,										

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 018-07BH

Project No.:

1308-101

Logged By:

Kathryn Pritchett

Drilling Co.:

Operational Technologies

Driller:

Jeff Blunt

Date Drilled:

10/05/94

Sampling Method:

Stainless-Steel Hand Auger

Depth Drilled:

2.5 ft. BLS

Depth To Water:

NA NA

Date Measured: Surface Elevation:

1412.78 ft.

	e Drille ling Mo			0/05/94 [and Au	ger	Surface Elevation:	1412.78 ft.			
							FI	ELD SC	REENI	NG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION O	F MATERIALS	PID	АТНА	BTEX	Benzene
Del	8	% R	Sa	G			(ppm)	(ppm)	(ppb)	(ppb)
	-	100			Silt, little sand, little to trace fine-grained sand, cobble-size yr 3/3), moist, roots, slight p	clay, trace gravel, ed clasts, dark brown (10 etroleum odor.	14.0	_	-	-
_	-	100					55.0	-	1,900	ND
_	-	100	X				8.0	-	2,428	24
	-				Boring Termina	ited at 2.5 ft.				
		:								
_										
										l
_										
5 —	_									

OPTECH

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 021-15BH

Project No.:

1308-101

Logged By:

Kathryn Pritchett

Drilling Co.:

Huntingdon Engineering and Environ.

Driller:

Jim Saugestad/Steve Sterk

Date Drilled:

07/14/94

ng Method: Hollow-Stem Auger

Sampling Method:

Stainless-Steel Split-Spoon Sampler

Depth Drilled:

Depth To Water: 5.

14.0 ft. 5.0 BLS

Date Measured:

07/14/94

Surface Elevation:

1406.34 ft.

Drill	ing Me	thod:	H	[ollow-St	tem Auger					
ît.)	5"	ery	SS	ic			FI	ELD SC	REENI	NG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF	MATERIALS	PID	АТНА	BTEX	Benzene
De	BI	1 %	S	9			(ppm)	(ppm)	(ppb)	(ppb)
_	16 20 11 11	70			Silt and sand, some gravel, m clasts, pebble-sized clasts, dar loose, moist-dry, no odor.		0	0	ND	ND
5 —	3 8 12 16	80	X		Silt, trace clay, trace gravel g medium reddish to yellowish-no odor.	ranule-sized clasts, brown, firm, soft, wet,	1.0	1.0	ND	ND
10 -	50 62 76 59	75	X		Silt, trace clay, some gravel, medium reddish to yellowish-ino odor.	cobble-sized clasts, brown, very firm, wet,	0.9	0	ND	ND
15 —	10 226	100			Silt, trace clay, some gravel, medium reddish to yellowish-loo odor Boring Termina - Refusal at 14 ft. BLS Borehole Abandoned by Pro Plan.	orown, very firm, wet, ted at 14 ft.	0.6	0.5	ND	ND

DULUTH RFI

PTEC

DULUTH, MINNESOTA, SITE 21

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 021-16BH

Project No.:

1308-101

Logged By:

Kathryn Pritchett

Drilling Co.:

Huntingdon Engineering and Environ.

Driller:

Jim Saugestad/Steve Sterk

Date Drilled:

07/14/94

Sampling Method:

Stainless-Steel Split-Spoon Sampler

Depth Drilled:

15.0 ft.

Depth To Water:

8.0 BLS

Date Measured:

07/14/94

Surface Elevation:

1401.14 ft.

Drill	ing Me	ethod:	H	lollow-S	tem Auger					
t.)	Ę.	ery	Si	ပ္			FI	ELD SC	REENII	NG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS		PID	АТНА	BTEX	Benzene
Dep	Bic	% R	Sa	. 5 			(ppm)	(ppm)	(ppb)	(ppb)
	15 23 23 13	50	X		Silt, some sand, little gravel, pebbl yellowish-brown, loose, moist-dry, Silt, trace to little sand, trace clay, pebble-sized clasts, dark yellowish moist-dry.	no odor. little gravel,	1.2	0.2	ND	ND
5 — —	7 5 5 10	80	X		Silt, trace clay, trace sand, little gr clasts, decrease abundance of sand section, dark yellowish-brown to m reddish-brown, firm, moist-dry.	downward in	1.1	1.5	ND	ND
10 -	7 16 22 23	70	X		Silt, trace clay, little to some grave clasts, medium to dark yellowish-b	l, cobble-sized rown, firm, wet .	1.5	0.9	ND	ND
15 -	10 17 20 27	55			Silt, trace clay, little to some grave clasts, medium to dark yellowish-b. Boring Terminated at - Borehole Abandoned by Procedur Plan.	rown, firm, wet	0.9	-	-	-
					•					

OPTECH

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 021-17BH

Project No.:

1308-101

Logged By:

Kathryn Pritchett

Drilling Co.:

Huntingdon Engineering and Environ.

Driller:

Jim Saugestad/Steve Sterk

Date Drilled:

07/15/94

Date Dimed.

Hallow-Stem Au

Sampling Method:

Stainless-Steel Split-Spoon Sampler

Depth Drilled:

15.0 ft.

Depth To Water:

8.0 BLS

Date Measured:

07/15/94

Surface Elevation:

1396.09 ft.

Drill	ing Me	thod:	Н	ollow-S	tem Auger				
\odot	=	ıry	30	బ		FI	ELD SC	REENI	NG _
Depth (ft.)	Blows/6"	3C0V6	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА	BTEX	Benzene
Dep	Blo	% Recovery	Sai	Ğr		(ppm)	(ppm)	(ppb)	(ppb)
	6 22 20 9	50	X		Silt, trace clay, trace gravel, dark yellowish-brown, loose, moist-dry.	0	0	ND	ND
5 - -	6 18 22 37	80			Silt, little to some gravel, trace clay, cobble-sized clasts, medium reddish to yellowish-brown, firm, moist-dry, no odor.	0	0	ND	ND
- 10 - -	12 20 26 35	95	X		Silt, little to some sand, little gravel, granule-sized clasts, medium reddish to yellowish-brown, firm, wet, no odor. Silt, little to some gravel, trace clay, cobble-sized clasts, medium reddish to yellowish-brown, firm, moist-dry, no odor.	0	0.4	ND	ND
15 -	14 21 20 23	85			Silt, little to some sand, little gravel, granule-sized clasts, medium reddish to yellowish-brown, firm, wet, no odor Sand and granule, trace gravel, pebble-sized clasts, dark yellowish to grey brown, loose, wet, no odor. Silt, trace clay, little gravel, granule-sized clasts, medium reddish to yellowish-brown, firm, wet. Boring Terminated at 15 ft. - Borehole Abandoned by Procedures Stated in Work Plan.	0.1	0.8	ND	ND

PTEC

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 021-18BH

Project No.: Logged By:

1308-101

Kathryn Pritchett

Drilling Co.:

Huntingdon Engineering and Environ.

Driller:

Jim Saugestad/Steve Sterk

Date Drilled:

07/14/94

Drilling Method: Hollow-Stem Auger

Sampling Method:

Stainless-Steel Split-Spoon Sampler

Depth Drilled:

15.0 ft.

Depth To Water:

5.0 BLS

Date Measured:

07/14/94

Surface Elevation:

1394.27 ft.

		ethod:			tem Auger	FI	ELD SC	REENI	NG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА	BTEX	Benzene
Del	<u> </u>	% R	Š	Ö		(ppm)	(ppm)	(ppb)	(ppb)
_	30 50 40 40	80	X		Sand and silt, little gravel, mostly granule-sized clasts, pebble-sized clasts, dark yellowish-brown, loose, soft, moist-dry, no odor. Silt, some sand, some gravel, cobble-sized clasts, dark	1.5	3.1	ND	ND
5 - -	- 7 6 5 7	20			yellowish-brown, firm, moist-dry, no odor. Poor Recovery	1.3	2.0	. -	_
10 -	7 12 -30 19	60	X		Silt, little to some gravel, trace to little clay, cobble-sized clasts, dark yellowish-brown, firm, wet, no odor.	1.4	-	ND	ND
15 -	13 20 23 21	85			Silt and sand, little to some gravel, trace clay, cobble-sized clasts, dark yellowish-brown, soft, wet. Silt, little sand, trace clay, little to some gravel, cobble-sized clasts, dark yellowish-brown, firm, wet, no odor. Boring Terminated at 15 ft. - Borehole Abandoned by Procedures Stated in Work Plan.	1.3	-	ND	ND
								:	

OPTECH

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 021-19BH

Project No.:

1308-101

Logged By:

Kathryn Pritchett

Drilling Co.:

Huntingdon Engineering and Environ.

Driller:

Jim Saugestad/Steve Sterk

Date Drilled:

07/14/94

Orilling Method: Hollow-

Sampling Method:

Stainless-Steel Split-Spoon Sampler

Depth Drilled:

15.0 ft.

Depth To Water:

4.0 BLS

Date Measured:

07/14/94

Surface Elevation:

1394.20 ft.

Drilli	ing Me	thod:	H	lollow-St	tem Auger	,			
ît.)		ery	S	ည		FIELD SCREENING			NG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА	BTEX	Benzene
Del	B	% R	Sa	יט		(ppm)	(ppm)	(ppb)	(ppb)
	11 66 38	50	X		Sand and silt, little gravel, pebble to cobble-sized clasts, medium reddish to grey brown to dark yellowish-brown, loose, moist-dry, no odor.	1.6	1.4	ND	ND
5 -	- 4 7 6 9	75			Sand and silt, little gravel, pebble to cobble-sized clasts, dark yellowish-brown, wet, no odor. Peat and silt, little gravel, trace to little clay, cobble-sized clasts, medium to dark grey brown, firm, wet, no odor.	1.7	1.6	ND	ND
10 -	13 23 30 36	100	X		Sand and silt, little gravel, pebble to cobble-sized clasts, medium reddish to grey brown to dark yellowish-brown, loose, moist-dry, no odor. Silt and clay, medium grey, soft, wet. Sand and granule, some gravels, some silt, cobble-sized clasts, soft, wet, slight petroleum odor.	1.8	-	ND	ND
15 —	22 18 20 25	100			Sand and silt, some granule, medium to dark yellowish-brown, soft, loose, wet. Sand and granule, some silt, medium to dark yellowish-brown, firm, soft, wet, slight petroleum odor. Boring Terminated at 15 ft Borehole Abandoned by Procedures Stated in Work Plan.	1.6	3.9	7	7

DULUTH RFI

O P T E C H

DULUTH, MINNESOTA, SITE 21

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 021-20BH

Project No.:

1308-101

Logged By:

Kathryn Pritchett

Drilling Co.:

Huntingdon Engineering and Environ.

Driller:

Jim Saugestad/Steve Sterk

Date Drilled:

07/13/94

Sampling Method:

Stainless-Steel Split-Spoon Sampler

Depth Drilled:

15.0 ft.

Depth To Water:

1.0 BLS

Date Measured:

07/13/94

Surface Elevation:

1395.63 ft.

Drill	ing Me	ethod:	H	lollow-S	tem Auger					
<u>:</u>	\\	ery	S	္ပ		-	FI	ELD SC	REENI	NG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS		PID	АТНА	BTEX	Benzene
Del	BI	% B	S	Ü			(ppm)	(ppm)	(ppb)	(ppb)
-	3 4 5 8	60	X		Silt, trace clay, trace gravel, medium reddish to yellowish no odor. Silt, some sand, trace to little clasts, medium reddish to ye wet, sand and granule lenses odor.	-brown, soft, moist-wet, e gravel, pebble-sized llowish-brown, firm, soft,	1.7	5.3	ND	ND
5 —	3 5 3 3	75	X		Silt and sand, little organics (fragments), medium reddish wet. Peat, trace silt, trace clay, m brown, loose, wet, wood frag	to yellowish-brown, soft, edium to dark grey	1.8	7.0	100	100
10 -	12 20 	80	X		Silt, trace gravel, trace to litt granule to pebble-sized clasts sand and granule lenses.	le sand, trace clay, s, firm, wet, no odor,	1.8	7.0	ND	ND
15 -	10 18 14 17	55			Silt, little to some sand, trace clay, granule to pebble-sized yellowish-brown, soft, firm, Boring Termin - Boring Abandoned by Proce Plan.	clasts, medium reddish to wet. ated at 15 ft.	1.5	-	-	-

DULUTH RFI

PTEC

DULUTH, MINNESOTA, SITE 21

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 021-21BH

Project No.:

1308-101

Logged By:

Kathryn Pritchett

Drilling Co.:

Driller:

Huntingdon Engineering and Environ. Jim Saugestad/Steve Sterk

Date Drilled:

07/13/94

Drilling Method: Hollow-Stem Auger

Sampling Method:

Stainless-Steel Split-Spoon Sampler

Depth Drilled:

15.0 ft.

Depth To Water:

4.0 BLS

Date Measured:

07/13/94

Surface Elevation:

1417.27 ft.

Dim	ing Me	mou.	11	C-WOILO	tem Auger	·			
3	2,,	ery	S	္ပ		FI	ELD SC	REENII	NG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА	BTEX	Benzene
Deg	Ble	% R	Sa	ى ت		(ppm)	(ppm)	(ppb)	(ppb)
	4 6 8 9	75	X		Silt, trace clay, trace gravel, granule to pebble-sized clasts, medium reddish to yellowish-brown, loose, dry, roots, no odor.	1.7	3.6	ND	ND
5 - - -	3 6 11 12	70	X		Silt, trace to little clay, trace to little gravel, granule to cobble-sized clasts, medium reddish to yellowish-brown, firm, wet, no odor.	1.9	5.9	ND	ND
10 —	12 22 22 22 24	80	X		Silt, trace to little clay, trace to little gravel, granule to cobble-sized clasts, medium reddish to yellowish-brown, firm, wet, no odor. Sand and granule, some silt, trace gravel, pebble-sized clasts, medium reddish to yellowish-brown, loose, soft, wet, no odor.	6.1	5.7	89	79
15 -	15 21 37 44	85	X		Sand and silt, trace gravel pebble-sized clasts, medium reddish to yellowish-brown, firm, wet, no odor. Silt, trace clay, trace to little gravel, medium reddish to yellowish-brown, firm, wet. Boring Terminated at 15 ft. - Borehole Abandoned by Procedures Stated in Work Plan.	63.3	14.4	164	105

TECH

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 021-22BH

Project No.:

1308-101

Logged By:

Kathryn Pritchett

Drilling Co.:

Huntingdon Engineering and Environ.

Driller:

Jim Saugestad/Steve Sterk

Date Drilled:

07/12/94

Sampling Method:

Stainless-Steel Split-Spoon Sampler

Depth Drilled:

15.0 ft.

Depth To Water:

6.0 BLS

Date Measured:

07/12/94

Surface Elevation:

1417.47 ft.

	ing Mo			lollow-S	tem Auger	Surface Elevation. 141	, . Tr Il.			
										NG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION O	F MATERIALS	PID	АТНА	BTEX	Benzene
Dep	B	% R	Sa	Ü			(ppm)	(ppm)	(ppb)	(ppb)
-	5 7 7 7	60	X		Silt, trace to little clay, little cobble-sized clasts, dark redo loose, moist-dry, roots, rotte	lish to yellowish-brown,	0	10.3	ND	ND
5 —	3 6 10 25	55			Silt, trace clay, trace to little pebble-sized clasts, gravel industry downward in section, medium yellowish-brown, soft to loos moist to wet.	creases in abundance n to dark	21.3	472.0	902	395
10 — — — — — — — — — — — — — — — —	12 60 45 41 10 33 27 30	75			Silt, trace clay, little to some cobble-sized clasts, dark yello no odor. Silt, little to some sand, incre downward in section, little gr pebble-sized clasts, dark yello no odor. Silt and sand, fine-grained sat some gravel, increases in abusection, dark yellowish-brown. Silt, some sand, some gravel, clasts, dark yellowish-brown, Boring Termina-Perched Water From 6.0 ft.	owish-brown, firm, wet, cases in abundance avel, granule to owish-brown, wet, moist, and, trace clay, little to indance downward in in, moist-dry. granule to cobble-sized dry. ated at 15 ft.	51.1	- 117.1	163 264	240
- -	60 45 41 10 33 27				cobble-sized clasts, dark yellono odor. Silt, little to some sand, incredownward in section, little grapebble-sized clasts, dark yellono odor. Silt and sand, fine-grained sasome gravel, increases in abusection, dark yellowish-brown, Silt, some sand, some gravel, clasts, dark yellowish-brown, Boring Termina	owish-brown, firm, wet, cases in abundance avel, granule to owish-brown, wet, moist, and, trace clay, little to indance downward in in, moist-dry. granule to cobble-sized dry. ated at 15 ft.	51.1	- 117.1		

OPTECH

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 021-23BH

Project No.:

1308-101

Logged By:

Kathryn Pritchett

Drilling Co.:

Huntingdon Engineering and Environ.

Driller:

Jim Saugestad/Steve Sterk

Date Drilled:

07/12/94

Sampling Method:

Stainless-Steel Split-Spoon Sampler

Depth Drilled:

15.0 ft.

Depth To Water:

NA

Date Measured:

NA

Surface Elevation:

1417.36 ft.

Drill	ing Me	thod:	H	ollow-S	tem Auger		~~~		
T T	24	ery	Si	ຸ່ວ		FI	ELD SC	REEND	NG
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА	втех	Benzene
De	B	1 %	Š	9		(ppm)	(ppm)	(ppb)	(ppb)
5 —	7 9 9 8	70			Silt, trace to little clay, little to some gravel, granule to cobble-sized clasts, soft, loose, dry-moist, no odor.	1.8	18.2	73	73
10 - -	— 22 24 27 17	95	X		Silt, trace to little clay, little to some gravel, granule to cobble-sized clasts, firm, dry, wet (11.0 - 11.5 perched).	47.3	366.0	1,289	1,110
15 —	9 12 11 18	80			Silt and sand, medium to dark yellowish-brown, loose, dry, at 14.5 BLS to 2 inch lense, silt with little clay, roots and gravel. Boring Terminated at 15 ft Perched water at 11.0-11.5 ft Borehole Abandoned by Procedures Stated in Work Plan.	107.0	318.0	103	103

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 021-24BH

Project No.:

1308-101

Logged By:

Kathryn Pritchett

Drilling Co.:

Huntingdon Engineering and Environ.

Driller:

Jim Saugestad/Steve Sterk

Date Drilled:

07/13/94

Sampling Method:

Stainless-Steel Split-Spoon Sampler

Depth Drilled:

17.0 ft.

Depth To Water:

10.0 ft. BLS

Date Measured:

07/13/94

Surface Elevation:

1403.73 ft.

1				ollow-S	-Stem Auger								
E.	.	ery	S	ပ		FI	ELD SC	REEND	NG				
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION O	F MATERIALS	PID	АТНА	втех	Benzene			
Dep	Blc	% R	Sa	<u>.</u>			(ppm)	(ppm)	(ppb)	(ppb)			
	8 10 12 10	70	X		Silt, trace clay, trace gravel, clasts, medium to dark yellow roots. Silt, trace to little clay, trace sized clasts, medium to dark dry-moist.	vish-brown, loose, moist, to little gravel, pebble	2.2	7.0	ND	ND			
5 —	16 24 106 100	55	X		Silt, trace to little clay, trace cobble-sized clasts, medium firm, moist. Sand and silt, trace gravel, lo Silt, trace to little clay, trace cobble-sized clasts, medium	oose, moist. to little gravel,	2.2	6.0	ND	ND			
10 -	17 14 10 8	75	X		firm, moist. Silt, trace clay, little gravel, medium grey brown, firm, n Silt, some sand, trace gravel, yellowish-brown, wet, strong	pebble-sized clasts, noist-dry, roots, no odor. pebble-sized clasts, dark	16.5	50.4	7,052	6,130			
-	4 14 15	0	M				NR	NR	-	-			
15 —	- 21 5 16 20 21	95			Silt, trace to little sand, trace clasts, medium reddish to yel no odor.	lowish-brown, firm, wet,	41.4	20.4	-	-			
					Boring Termin Borehole Abandoned by Pro								

OPTECH

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 021-25BH

Project No.:

1308-101

Logged By:

Kathryn Pritchett

Drilling Co.:

Huntingdon Engineering and Environ.

Driller:

Jim Saugestad/Steve Sterk

Date Drilled:

07/12/94

Drilling Method: Hollow-Stem Auger

Sampling Method:

Stainless-Steel Split-Spoon Sampler

Depth Drilled:

15.0 ft.

Depth To Water:

12.0 ft. BLS

Date Measured:

07/12/94

Surface Elevation:

1413.95 ft.

t.)		È			tem Augei	FIELD SCREENING					
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА	BTEX	Benzene		
Del	B	% R	Se	Ð		(ppm)	(ppm)	(ppb)	(ppb)		
_	2 5 11 15	75			Silt, little to some gravel, granule to cobble-sized clasts, medium to dark yellowish-brown, loose, dry, no odor, roots.	0	13.5	88	82		
5 —			,								
10 - -	16 20 21 14	80			Silt, trace to little clay, little to some gravel, granule to cobble-sized clasts, dark yellowish-brown, loose, dry, moist at very end, roots, no odor.	3.6	17.1	ND	ND		
15 —	3 7 8 16	90			Silt, little clay, little to some gravel, granule to cobble-sized clasts, dark-reddish to yellowish-brown, firm, wet, rotten gabbra clasts, no odor. Boring Terminated at 15 ft Borehole Abandoned by Procedures Stated in Work Plan.	1.1	15.6	58	58		

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 021-26BH

Project No.:

1308-101

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura

Date Drilled

05/16/05

Sampling Method:

Split-Spoon Sampler

Depth Drilled:

10.0 ft.

Depth To Water:

NA

Date Measured:

NA

Surface Elevation:

1306 05 ft

	Date Drilled: 05/16/95 Surface Elevation: 1396.95 ft. Drilling Method: Hollow Stem Auger									
					com raugor	FIELD SCREEN			٧G	
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF	PID (ppm)	ATHA (ppm)	· -	-	
	14 8 6 6				Silt, trace sand (fine to coarse), cobble), dark brown (7.5 yr 4/4).		2.8	-		
5 —	3 5 4 5 8 9	55			Silt, little sand (fine), firm, very (7.5 yr 4/4).	y moist, dark brown	0.0	-		
15 -	_				Boring Terminated	at 10.0 ft.				

OPTECH

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING 021-27BH

Project No.:

1308-101

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura

Date Drilled:

05/16/95

Sampling Method:

Split-Spoon Sampler

Depth Drilled:

10.0 ft.

Depth To Water:

Date Measured:

NA

NA

Surface Elevation:

1394.81 ft.

Drilling Method: Hollow St.					tem Auger	Surface Elevation:	1394.81 It.				
					3						
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION O	PID (ppm)	ATHA (ppm)	-	-		
	10 9 6 6	30	X		Silt, trace sand (medium), tra fragments, dry, fragile, brow	ace gravel, asphalt n (7.5 yr 5/4).	0.0	-			
5 —	6 3 6 4	50			Silt, little sand (coarse), trace dark brown (7.5 yr 3/4).	e gravel (pebble), wet,	0.0	-			
	4 6 6 8	55	X		Silt, little sand (coarse), trace dark brown (7.5 yr 3/4).	e gravel (pebble), wet,	0.0	-			
10 —					Boring Termina	ted at 10.0 ft.					

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 021-28BH

Project No.:

1308-101

Logged By:

Kathleen Merino

Drilling Co.:

American Engineering Testing

Driller:

J. Tuura

Date Drilled:

05/16/95

Sampling Method:

Split-Spoon Sampler

Depth Drilled:

6.0 ft.

NA

Depth To Water: Date Measured:

NA

Surface Elevation:

1393.22 ft.

Drilling Method: Hollow Stem Auger						Surface Dievation. 159	J.22 II.			
						FIELD SCREEN			NG	
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION O	PID	АТНА	-	-	
Ã	_ m	%	S							
_	4 4 4 4	60	X		Silt, little sand (medium to co cobble), moist, dark brown (parse), trace gravel (up to 7.5 yr 4/4).	0.0	-		
5	6 - 18 - 5 1	30	X		Silt, little sand (medium to co cobble), moist, dark brown (parse), trace gravel (up to 7.5 yr 4/4).	0.0	-		:
					Boring Termina	ated at 6.0 ft.	-			
10				;						
10	_									
		,								
15 —	-									
_										
_										

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING 021-26MW

Project No.:

1308-101

Logged By:

Kathryn Pritchett

Drilling Co.:

Huntingdon Engineering and Environ.

Driller:

Jim Saugestad/Steve Sterk

Date Drilled:

07/15/94

Drilling Method:

Hollow-Stem Auger

Sampling Method:

Stainless-Steel Split-Spoon Sampler 19.0 ft.

Depth Drilled:

Depth To Water:

6.5 ft. BLS

Date Measured:

07/15/94

Surface Elevation:

1393.37 ft.

TOC Elevation 1396 10 ft

Driiii	ng Me	etnoa:	: Hollow-Stem Auger TOC Elevation: 1396.10 ft.								
ř.)	2"	ery	S	ည			FIELD SCREENING		ng		
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MA	ATERIALS	PID	АТНА	BTEX	Benzene	Monitoring Well
Del	B	% R	Sa	Ġ			(ppm)	(ppm)	(ppb)	(ppb)	Moi
-	6 4 4 4	40	X		Silt and sand, some gravel, degrey brown, loose, dry, no or	ark yellowish to lor.	0	4.0	ND	ND	
5 —	4 - ¹¹ 7 8	10	X				NR	NR	-	-	
_	1 2 3 4	40			Peat, some silt, medium to da wet, no odor.	irk grey brown,	0	0	ND	ND	
10	3 6 9 12	65			Silt, little gravel, pebble-sized medium reddish to yellowish-soft, wet.	l clasts, brown, firm,	0	0	ND	ND .	
-	5 11 18 15	100			Silt, little gravel, cobble-sized medium reddish to yellowish-soft, wet. Boring Terminated a	brown, firm,	0	0	ND	ND	
20 -					- Monitor Well was Construct Drilling Borehole.	ed upon					-

APPENDIX D MONITOR WELL CONSTRUCTION RECORD

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION D.1 INTRODUCTION

The monitor well for Site 21 was constructed as specified in Addendum 1 to RCRA Facility Investigation. The monitor well construction diagram displays the water-level data and well construction information for the well. Monitor well construction information includes an outline of the monitor well and contains the depth of the borehole, the screened interval, and the sand packed and bentonite interval.

Also included in this appendix is a copy of the well record for the Minnesota Department of Health.

THIS PAGE INTENTIONALLY LEFT BLANK

Project: Duluth RFI 07/14/94 Date Installed: Drilling Contractor: <u>Huntingdon</u> Engin. Town/City: Duluth and Environmental Minnesota State: Drilling Method: Hollow-Stem Auger 1396.10 ft. TOC Elev: Borehole Diameter: 6.25 in. Ground Elev.: 1393.37 ft. Development Technique: Stainless-Steel Split-Spoon Sampler Water Level: 6.5 ft. TOC Not To Scale Total Well Depth: 19.0 ft.

MONITOR-WELL CONSTRUCTION LOG Well No. 021-26MW Minnesota Boring No. MW 920-120

WELL LOCATION		7	MIM		A DEPARTMENT OF HEALTH MINNESOTA UNIQUE							
County Name		7		-	WELL RECORD 547861							
ST. LOW	15_			Minneso	esota Statutes Chapter 103I							
	ship No. Range No.	Section No. F	raction			ork Completed						
Herman	50 14	6 1	IE "SV	NWI	17	7-15-94						
Numerical Street Address and City	of Well Location	٥	r Fire Numl	ber	DRILLING METHOD Cable Tool Driven	□ Dug						
Dulth Inc.	Airport				☐ Auger 🔑 Rotary	☐ Jetted						
Show exact location of well in secti	on grid with "X".	Sh	map of well owing prop	env lines.								
	1- Terminal		roads and	buildings.	DRILLING FLUID WONE							
		्र वि	W n		USE	☐ Heating/Cooling						
		12	4		☐ Domestic	☐ Industry/Commercial ☐ Remedial						
. "	<u> </u>				☐ Test Well ☐ Dewatering	O						
	½ mi.	1			•	No HOLE DIAM.						
		1			Steel SThreaded	☐ Welded						
I mile -		{			U Flasic U							
					CASING DIAMETER WEIGHT	12 17						
PROPERTY OWNER'S NAME			_	,	in. toft	Ibs./ft. 12 in. to 11 ft.						
Minnesota Ar 1	Vational &	MARAJ D	<u>Inlend</u>	th_	in. to ft.	in. to ft.						
Mailing address if different than pro	perty address indicated	above.			in. toft.	lbs./ftin. toft.						
					1 .	PEN HOLE mft.toft.						
						am. 2 >						
		•) · · · _	ngth/_ 0 **						
					Set betweenft. andft.	FITTINGS: MXE						
GEOLOGICAL MATERIALS	COLOR	HARDNESS OF	FROM	то	STATIC WATER LEVEL . ft. below above land s	urface Date measured 7-15-94						
GEOLOGIONE WITH ET INTE	002011	MATERIAL	11.0		L	unace Date measured						
fell same con	W BN	LOOSE	0	_	PUMPING LEVEL (below land surface) it. after	_ hrs. pumpingg.p.m.						
fill, SANDERA	Di D	20076	10		WELL HEAD COMPLETION							
Peat	BN	6005€	5	a	☐ Pitless adapter manufacturer	Model						
1 0001		1000	<u> </u>		☐ Casing Protection	[] 12 in. above grade						
Silk Pent	BN	MED	9	17	GROUTING INFORMATION							
			. ~	1,7	Well grouted? Yes □ No							
SAND WGLAVE	i BU	MAN	11/	19	Grout Material & Neat cement Bentonite	ft □ yds. 🎏 bags						
						ft						
			<u> </u>		fromto	ft						
					NEAREST KNOWN SOURCE OF CONTAMINATION							
						type						
		ļ	İ	ĺ								
		ļ			PUMP SNot installed Date installed							
	1				Manufacturer's name							
					Model number HP							
					Length of drop pipeft.	Capacityg.p.m.						
	+				Pressure Tank Capacity	ating						
	_		i									
					ABANDONED WELLS Does property have any not in use and not sealed well(s)?	2 I Vac XNo						
						: L 103 JUNIO						
					WELL CONTRACTOR CERTIFICATION							
					This well was drilled under my supervision and in accorda The information contained in this report is true to the best							
						o, momoage.						
Use a sec	ond sheet, if needed											
REMARKS, ELEVATION, SOL	JRCE OF DATA, etc.				Licensee Business Name	Lic. or Reg. No.						
				ļ	Authorized Representative Signature	Date						
					JAMET SAUGESTA	D 7-28-94						
				j	UAMES SAUGESTA	Date Date						
]						

PIEZOMETER FIELD DATA SHEET

JOB NO. 8400-94-107				P	IEZOMETER NO (Indicate if in sepa	arate borehole)
CREW CHIE	F J. Saugestad				BORING'NO	MW 920 120
GROUND E	ELEVATION AND DATUM					
	. 3		VENTED C	AP	-	
	RISER PIPE			VE CASING		(11 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
AB	OVE GROUND		D	iameter and Type		4" CASING 5.0
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		· / / /	otal Length	_	3.1
			` '	ength Above Ground		
			THICKNES	S AND TYPE OF SE	AL	Grout
	(		DIAMETER	LAND TYPE OF RE	SER PIPE	2" Stainles:
19 ') PTH OF RING	PIPE		TYPE OF B	ACKFILL AROUNI	ORISER	Grout
			THICKNES	S AND TYPE OF SE	EAL _	Pellets 2'
		BB1				5' .
				TOP OF FILTER S.	AND	
	<u> </u>		1	IEZOMETER	•	Stainless
	•		•	Salvanized Carbon St VC	.ee: —	
			<del></del>	ther (State)		
	(10 )		DIAMETER	AND LENGTH OF	SCREEN	2" x 10"
	PIEZOMETER -		SCREEN G OPENINGS	AUGE OR SIZE OF (SLOT NO.)		.010
			TYPE OF I	ILTER AROUND S	CREEN	Density
	. ↑		DEPTH TO	BOTTOM OF PIEZO	OMETER	17.0
	·		·	BOTTOM OF FILT		19.0
			THICKNES	S AND TYPE OF SE	EAL	None
<u> </u>			DIAMETEI	OF BOREHOLE		6 1/4 ID
ion Started:	Date 7-15-94 Tim	<u> 11:20</u>	}	PIEZOMETER WAT	ER LEVEL MEASUR	EMENTS
	Date 7-15-94 Tim		Date	Time	Bailed Depth	
					to	
DD: ie if	Flight Auger to				10	
d in	Hollow Stem Au	ger to			10	
	Casing to				ш	
•	Drilling Fluid:					
[	Water from	_ to	REMARKS:			

Revert from

# APPENDIX E WELL DEVELOPMENT LOG

### SECTION E.1 INTRODUCTION

This appendix contains the well development log for the monitor well installed during the Addendum 1 RCRA Facility Investigation for Site No. 21 at the Minnesota Air National Guard Base, Duluth, Minnesota. The well development log and a photograph of purged water are included.

#### WELL DEVELOPMENT LOG

(Time)

Monitor Well: 021-026MW

Development Start: (Date) 7/20/94

(Time) 07:30

Development End: (Date) 7/20/94

09:25

Developed By:

Huntingdon Engineering and Environmental

PID Reading: (Background) 0 ppm

(Reading) 0 ppm

Depth to Water (BTOC): 7.92'

Depth to Bottom of Well (BTOC): 20.23'

Volume of Water in the Well:

 $V_{\text{(gal)}} = [0.0408] \text{ x [Well Diameter (inches)]}^2 \text{ x [Height of Water in Well (feet)]}$ 

 $[0.0408] \times [2"]^2 \times [12.31']$ 

 $V_{(gal)} = 2$ 

 $\mathbf{V}_{\text{(gal)}} \times 3 = 6$ 

Development Method: 2" PVC Bailer Containment: Plastic-lined, steel, 55-gal drum

Average Rate of Removal of Water:  $\sim 0.5$  gal/min.

Weather: Sunny, mid 60's

Time	Amount of Water Removed (gallons)	Temperature (°F)	pН	Conductivity (µS/cm)	Clarity
08:07	6	64.3	5.66	596	cloudy
08:12	8	62.8	5.94	640	cloudy
08:19	10	63.4	6.14	696	cloudy
08:23	12	65.4	6.32	764	cloudy
08:30	14	65.8	6.45	636	cloudy
08:35	16	65.2	6.69	570	cloudy
08:40	18	62.9	6.78	486	cloudy
08:43	20	55.7	6.86	635	cloudy
08:48	22	54.1	7.01	587	cloudy
08:55	24	55.2	7.14	712	cloudy
09:04	25	55.4	7.13	870	cloudy
09:07	26	55.4	7.11	862	slightly cloudy
09:12	27	55.1	7.14	863	slightly cloudy



Photography of water purged from monitor well 021-026MW on 20 July 1994.

# APPENDIX F WELL PURGING AND SAMPLING LOGS

# SECTION F.1 INTRODUCTION

This appendix contains the well purging and well sampling logs of the Addendum 1 RCRA Facility Investigation for Site No. 21 at the Minnesota Air National Guard Base, Duluth, Minnesota. A summary of the well purging logs and well sampling logs follow.

#### WELL PURGING LOG

Monitor Well No.: 021-009MW

Purge Start: (Date) 7/22/94 (Time) 08:00 Purge End: (Date) 7/22/94 (Time) 08:30

Purged By: Kathryn Pritchett, Joe Byrd, Jr., and Ruben Torres

Background PID Reading: 0 ppm PID Reading: 0 ppm

Depth to Water (BTOC): 10.84' Depth to Bottom of Well (BTOC): 19.92'

Volume of Water in Well (gallons) =  $(0.0408)x(well diameter(inches))^2 x height of water$ 

column (feet)

V = (0.0408)x(2")x(9.08') = 1.5 gallons

Volume of Water in Well x 3 = 4.5 gallons

Purge method: 2" PVC Bailer

Purge Water Containment: Plastic-lined, steel, 55-gallon drum

Average Rate of Removal of Water: ~0.3 gal./min.

Weather: Cloudy, 60's

Time	Amount of Water Removed (gallons)	Temperature (°F)	pН	Conductivity (µS/cm)	Clarity
8:20	4.5	55.8	6.60	1481	Cloudy
8:25	6.5	54.2	6.58	1496	Cloudy
8:27	7	54.2	6.53	1481	Cloudy

#### WELL PURGING LOG

Monitor Well No.: 021-009MW

Purge Start: (Date) 10/06/94 (Time) 09:45 Purge End: (Date) 10/06/94 (Time) 10:22

Purged By: Kathryn Pritchett and Jeff Blunt

Background PID Reading: 0 ppm PID Reading: 0 ppm

Depth to Water (BTOC): 11.52' Depth to Bottom of Well (BTOC): 19.89'

Volume of Water in Well (gallons) =  $(0.0408)x(well diameter(inches))^2 x$  height of water

column (feet)

V = (0.0408)x(2")x(8.37') = 1.4 gallons

Volume of Water in Well x 3 = 4.1 gallons

Purge method: 2" TeflonTM Bailer

Purge Water Containment: Plastic-lined, steel, 55-gallon drum

Average Rate of Removal of Water: ~0.2 gal./min.

Weather: Cloudy, 50's, 40% chance of rain

Time	Amount of Water Removed (gallons)	Temperature (°C)	pН	Conductivity (µS/cm)	Clarity
10:02	4	13.0	6.51	896	Cloudy
10:12	5.5	12.0	6.52	698	Slightly cloudy
10:17	6.5	12.0	6.60	821	Cloudy
10:22	7.	12.0	6.65	825	Cloudy

#### WELL PURGING LOG

Monitor Well No.: 021-010MW

Purge Start: (Date) 7/22/94 (Time) 10:00 Purge End: (Date) 7/22/94 (Time) 10:40

Purged By: Kathryn Pritchett, Joe Byrd, Jr., and Ruben Torres

Background PID Reading: 0 ppm PID Reading: 0 ppm

Depth to Water (BTOC): 6.86' Depth to Bottom of Well (BTOC): 17.56'

Volume of Water in Well (gallons) =  $(0.0408)x(well diameter(inches))^2 x height of water$ 

column (feet)

V = (0.0408)x(2")x(10.70') = 1.7 gallons

Volume of Water in Well x 3 = 5.2 gallons

Purge method: 2" PVC Bailer

Purge Water Containment: Plastic-lined, steel, 55-gallon drum

Average Rate of Removal of Water: ~0.3 gal./min.

Weather: Cloudy, 60's

Time	Amount of Water Removed (gallons)	Temperature (°F)	pН	Conductivity (µS/cm)	Clarity
10:20	5	60.2	5.89	734	Cloudy
10:25	6.5	59.4	6.18	721	Cloudy
10:28	8	56.7	6.35	681	Cloudy
10:35	8.5	55.1	6.43	670	Cloudy
10:37	8.5	55.1	6.71	683	Cloudy

### WELL PURGING LOG

Monitor Well No.: 021-010MW

Purge Start: (Date) 10/06/94 (Time) 13:20 Purge End: (Date) 10/06/94 (Time) 14:10

Purged By: Kathryn Pritchett and Jeff Blunt

Background PID Reading: 0 ppm PID Reading: 0 ppm

Depth to Water (BTOC)L: 6.79' Depth to Bottom of Well (BTOC): 17.71'

Volume of Water in Well (gallons) =  $(0.0408)x(well diameter(inches))^2 x height of water$ 

column (feet)

V = (0.0408)x(2")x(10.92') = 1.8 gallons

Volume of Water in Well x 3 = 5.3 gallons

Purge method: 2" TeflonTM Bailer

Purge Water Containment: Plastic-lined, steel, 55-gallon drum

Average Rate of Removal of Water: ~0.3 gal./min.

Weather: Cloudy, 50's, 40% chance of rain

Time	Amount of Water Removed (gallons)	Temperature (°C)	рН	Conductivity (µS/cm)	Clarity
13:45	5 .	14.5	6.65	1046	Clear - grey - black
13:51	6.5	14.0	6.71	1002	grey
13:55	8	13.5	6.81	906	Clear - grey tint
14:00	9.5	13.5	7.06	788	Clear - brown tint
14:05	11	13.0	7.15	778	Clear - brown
14:10	12	13.5	7.15	790	Cloudy

#### WELL PURGING LOG

Monitor Well No.: 021-014MW

Purge Start: (Date) 7/22/94 (Time) 15:35 Purge End: (Date) 7/22/94 (Time) 16:11

Purged By: Kathryn Pritchett, Joe Byrd, Jr., and Ruben Torres

Background PID Reading: 0 ppm PID Reading: 0 ppm

Depth to Water (BTOC): 4.87' Depth to Bottom of Well (BTOC): 14.88'

Volume of Water in Well (gallons) =  $(0.0408)x(well diameter(inches))^2 x$  height of water

column (feet)

V = (0.0408)x(2")x(10.01') = 1.6 gallons

Volume of Water in Well x 3 = 4.9 gallons

Purge method: 2" PVC Bailer

Purge Water Containment: Plastic-lined, steel, 55-gallon drum

Average Rate of Removal of Water: ~0.7 gal./min.

Weather: Cloudy, 60's

Time	Amount of Water Removed (gallons)	Temperature (°F)	pН	Conductivity (µS/cm)	Clarity
15:50	6	63.6	6.68	1654	Cloudy
15:53	8	59.6	6.83	1673	Cloudy
15:56	10	59.3	7.06	1731	Cloudy
16:00	13	59.2	7.31	1721	Cloudy
16:04	15	59.0	7.29	1711	Cloudy
16:07	17	59.3	7.38	1711	Cloudy

#### WELL PURGING LOG

Monitor Well No.: 021-014MW

Purge Start: (Date) 10/06/94 (Time) 10:30 Purge End: (Date) 10/06/94 (Time) 11:45

Purged By: Kathryn Pritchett and Jeff Blunt

Background PID Reading: 0 ppm PID Reading: 0 ppm

Depth to Water (BTOC): 4.83' Depth to Bottom of Well (BTOC): 14.79'

Volume of Water in Well (gallons) =  $(0.0408)x(well diameter(inches))^2 x height of water$ 

column (feet)

V = (0.0408)x(2")x(9.96') = 1.6 gallons

Volume of Water in Well x 3 = 4.9 gallons

Purge method: 2" TeflonTM Bailer

Purge Water Containment: Plastic-lined, steel, 55-gallon drum

Average Rate of Removal of Water: ~0.4 gal./min.

Weather: Cloudy, 50's, 40% chance of rain

Time	Amount of Water Removed (gallons)	Temperature (°C)	pН	Conductivity (µS/cm)	Clarity
11:20	5	13.0	6.54	1481	Slightly cloudy
11:24	6.5	13.0	6.56	1844	cloudy
11:28	8	13.0	6.58	1807	cloudy
11:32	9.5	13.0	6.58	1719	cloudy
11:38	11	13.0	6.61	1652	cloudy
11:42	12.5	13.0	6.63	1654	cloudy
11:45	14	13.0	6.68	1645	cloudy

#### WELL PURGING LOG

Monitor Well No.: 021-026MW

Purge Start: (Date) 7/22/94 (Time) 11:25 Purge End: (Date) 7/22/94 (Time) 13:10

Purged By: Kathryn Pritchett, Joe Byrd, Jr., and Ruben Torres

Background PID Reading: 0 ppm PID Reading: 0 ppm

Depth to Water (BTOC): 8.21' Depth to Bottom of Well (BTOC): 20.22'

Volume of Water in Well (gallons) =  $(0.0408)x(well diameter(inches))^2 x height of water$ 

column (feet)

V = (0.0408)x(2")x(12.01') = 2.0 gallons

Volume of Water in Well x 3 = 6 gallons

Purge method: 2" PVC Bailer

Purge Water Containment: Plastic-lined, steel, 55-gallon drum

Average Rate of Removal of Water: ~0.6 gal./min.

Weather: Cloudy, 60's

Time	Amount of Water Removed (gallons)	Temperature (°F)	pH	Conductivity (μS/cm)	Clarity
11:50	6	62.4	7.31	703	Cloudy
11:55	8	62.4	7.31	751	Cloudy
12:00	10	62.5	7.03	861	Cloudy
12:04	12	61.1	6.99	905	Cloudy
12:08	14	61.2	7.00	967	Cloudy
12:14	16	62.5	6.99	1103	Cloudy
12:20	18	61.9	6.82	1129	Cloudy
12:25	20	61.5	6.79	1130	Cloudy
12:29	22	61.5	6.77	1193	Cloudy
12:32	. 24	60.9	6.73	1271	Cloudy
12:39	26	60.4	6.73	1254	Cloudy
12:41	28	59.8	6.98	908	Cloudy
12:45	30	58.1	7.11	835	Cloudy
12:50	32	57.4	7.33	669	Cloudy
12:55	34	55.7	7.70	624	Cloudy
13:01	36	55.2	7.81	684	Cloudy
13:07	38	56.4	7.85	722	Cloudy
13:10	40	58.4	7.60	777	Cloudy

#### WELL PURGING LOG

Monitor Well No.: 021-026MW

Purge Start:

(Date) 10/06/94

(Time)

14:15

Purge End:

(Date) 10/06/94

(Time)

15:24

Purged By:

Kathryn Pritchett and Jeff Blunt

Background PID Reading: 0 ppm

PID Reading: 0 ppm

Depth to Water (BTOC): 7.65'

Depth to Bottom of Well (BTOC): 20.38' Volume of Water in Well (gallons) = (0.0408)x(well diameter(inches))² x height of water

column (feet)

V = (0.0408)x(2")x(12.73') = 2.1 gallons

Volume of Water in Well x 3 = 6.2 gallons

Purge method: 2" TeflonTM Bailer

Purge Water Containment: Plastic-lined, steel, 55-gallon drum

Average Rate of Removal of Water: ~0.4 gal./min.

Weather: Cloudy, 50's, 40% chance of rain

Comments:

Bailer was decontaminated as required by Work Plan.

Time	Amount of Water Removed (gallons)	Temperature (°C)	pН	Conductivity (μS/cm)	Clarity
15:00	6	14.0	7.47	637	Slightly cloudy
15:04	8	13.5	7.48	697	Slightly cloudy
15:08	10	13.0	7.47	590	Slightly cloudy
15:12	12	13.0	7.55	544	Slightly cloudy
15:19	14	12.5	7.62	535	Slightly cloudy
15:24	16	12.5	7.63	538	Slightly cloudy

#### WELL SAMPLING LOG

Monitor Well No.: 021-009MW

Sample Start: (Date) 7/22/94 (Time) 09:30 Sample End: (Date) 7/22/94 (Time) 09:50

Sampled By: Kathryn Pritchett, Joe Byrd, Jr., and Ruben Torres

Background PID Reading: 0 ppm PID Reading: 0 ppm

Depth to Water (BTOC): 10.84'

Screen Interval: 10.41' - 20.41' BTOC Sampling method: 2" TeflonTM Bailer

Sampling Equipment Decontamination method:

Bailer was decontaminated as required by

Work Plan.

Lab Analyses:

(3) 40-ml vials VOC (SW 8240) preserved with HCL

(1) 500-ml Poly Metals (SW 6010/7000) preserved with HNO₃

QA/QC Samples:

Equipment rinseate blank 021-RB04

Field blank - 021-FB01

Analyses same as 021-009MW-GW01

Weather: Cloudy, 60's

Time	Temperature (°F)	pН	Conductivity (μS/cm)	Clarity
9:30	57.6	5.83	1330	Cloudy

#### WELL SAMPLING LOG

Monitor Well No.: 021-009MW

Sample Start: (Date) 10/06/94 (Time) 10:40 Sample End: (Date) 10/06/94 (Time) 10:50

Sampled By: Kathryn Pritchett and Jeff Blunt

Background PID Reading: 0 ppm PID Reading: 0 ppm

Depth to Water (BTOC): 11.52'

Screen Interval: 10.41' - 20.41' BTOC Sampling method: 2" TeflonTM Bailer

Sampling Equipment Decontamination method: Bailer was decontaminated as required by

Work Plan.

Lab Analyses:

(3) 40-ml vials VOC (SW 8240) preserved with HCL

021-009MW-GW02

QA/QC Samples:

Equipment rinseate blank sample of the 2" TeflonTM bailer - 021-RB08

Analyses same as 021-009MW-GW02

Weather: Cloudy, 50's, 40% chance of rain

Time	Temperature (°C)	pН	Conductivity (μS/cm)	Clarity
10:40	12.5	6.65	869	cloudy

#### WELL SAMPLING LOG

Monitor Well No.: 021-010MW

Sample Start: (Date) 7/22/94 (Time) 10:55 Sample End: (Date) 7/22/94 (Time) 11:15

Sampled By: Kathryn Pritchett, Joe Byrd, Jr., and Ruben Torres

Background PID Reading: 0 ppm PID Reading: 0 ppm

Depth to Water (BTOC): 6.86'

Screen Interval: 7.66' - 17.66' BTOC Sampling method: 2" TeflonTM Bailer

Sampling Equipment Decontamination method: Bailer was decontaminated as required by

Work Plan.

Lab Analyses:

(3) 40-ml vials VOC (SW 8240) preserved with HCL

(1) 500-ml Poly Metals (SW 6010/7000) preserved with HNO₃

QA/QC Samples:

Duplicate - 021-010AMW-GW01

Equipment rinseate blank - 021-RB04 Analyses - same as 021-010MW-GW01

Weather: Cloudy, 60's

Time	Temperature (°F)	pН	Conductivity (μS/cm)	Clarity
11:15	61.4	6.76	783	slightly cloudy

#### WELL SAMPLING LOG

Monitor Well No.: 021-010MW

Sample Start: (Date) 10/06/94 (Time) 14:25 Sample End: (Date) 10/06/94 (Time) 14:35

Sampled By: Kathryn Pritchett and Jeff Blunt

Background PID Reading: 0 ppm PID Reading: 0 ppm

Depth to Water (BTOC): 6.79'

Screen Interval: 7.66' - 17.66' BTOC Sampling method: 2" TeflonTM Bailer

Sampling Equipment Decontamination method: Bailer was decontaminated as required by

Work Plan.

Lab Analyses:

(3) 40-ml vials VOC (SW 8240) preserved with HCL

021-010MW-GW02

QA/QC Samples:

Duplicate sample was collected - 021-010AMW-GW02

Equipment rinseate blank sample of the 2" TeflonTM bailer - 021-RB08

Analyses same as 021-010MW-GW02

Weather: Cloudy, 50's, 40% chance of rain

Time	Temperature (°C)	pН	Conductivity (µS/cm)	Clarity
14:30	14.5	7.15	976	slightly cloudy

#### WELL SAMPLING LOG

Monitor Well No.: 021-014MW

Sample Start: (Date) 7/22/94 (Time) 16:15 Sample End: (Date) 7/22/94 (Time) 16:25

Sampled By: Kathryn Pritchett, Joe Byrd, Jr., and Ruben Torres

Background PID Reading: 0 ppm PID Reading: 0 ppm

Depth to Water (BTOC): 4.87'

Screen Interval: 5.46' - 15.46' BTOC Sampling method: 2" TeflonTM Bailer

Sampling Equipment Decontamination method: B

Bailer was decontaminated as required by

Work Plan.

Lab Analyses:

(3) 40-ml vials VOC (SW 8240) preserved with HCL

(1) 500-ml Poly Metals (SW 6010/7000) preserved with HCL

QA/QC Samples:

Equipment rinseate blank - 021-RB04

Field blank - 021-FB01

Analyses same as 021-014MW-GW01

Weather: Cloudy, 60's

Time	Temperature (°F)	pН	Conductivity (μS/cm)	Clarity
15:30	-	-	~	-

#### WELL SAMPLING LOG

Monitor Well No.: 021-014MW

Sample Start: (Date) 10/06/94 (Time) 11:55 Sample End: (Date) 10/06/94 (Time) 12:00

Sampled By: Kathryn Pritchett and Jeff Blunt

Background PID Reading: 0 ppm PID Reading: 0 ppm

Depth to Water (BTOC): 4.83'

Screen Interval: 5.46' - 15.46 BTOC Sampling method: 2" TeflonTM Bailer

Sampling Equipment Decontamination method: Bailer was decontaminated as required by

Work Plan.

Lab Analyses:

(3) 40-ml vials VOC (SW 8240) preserved with HCL

021-014MW-GW02

QA/QC Samples:

Equipment rinseate blank sample of the 2" TeflonTM bailer - 021-RB08

Analyses same as 021-014MW-GW02

Weather: Cloudy, 50's, 40% chance of rain

Time	Temperature (°C)	pН	Conductivity (μS/cm)	Clarity
11:55	13.0	6.71	1335	Slightly cloudy

#### WELL SAMPLING LOG

Monitor Well No.: 021-026MW

Sample Start: (Date) 7/22/94 (Time) 14:45 Sample End: (Date) 7/22/94 (Time) 15:15

Sampled By: Kathryn Pritchett and Jeff Blunt

Background PID Reading: 0 ppm PID Reading: 0 ppm

Depth to Water (BTOC): 8.21'

Screen Interval: 9.73' - 19.73' BTOC Sampling method: 2" TeflonTM Bailer

Sampling Equipment Decontamination method:

Bailer was decontaminated as required by

Work Plan.

Lab Analyses:

(3) 40-ml vials VOC (SW 8240) preserved with HCL

(1) 500-ml Poly Metals (SW 6010/7000) preserved with HCL

QA/QC Samples:

Equipment rinseate blank - 021-RB04

Analyses same as 021-026MW-GW01

Weather: Cloudy, 60's

Time	Temperature (°F)	pН	Conductivity (µS/cm)	Clarity
15:15	63.2	7.02	967	slightly cloudy

#### WELL SAMPLING LOG

Monitor Well No.: 021-026MW

Sample Start: (Date) 10/06/94 (Time) 15:30 Sample End: (Date) 10/06/94 (Time) 15:40

Sampled By: Kathryn Pritchett and Jeff Blunt

Background PID Reading: 0 ppm PID Reading: 0 ppm

Depth to Water (BTOC): 7.65'

Screen Interval: 9.73' - 19.73' BTOC Sampling method: 2" TeflonTM Bailer

Sampling Equipment Decontamination method: Bailer was decontaminated as required by

Work Plan.

Lab Analyses:

(3) 40-ml vials VOC (SW 8240) preserved with HCL

QA/QC Samples:

Equipment rinseate blank - 021-RB08

(3) 40-ml vials VOC (SW 8240)

Weather: Cloudy, 50's, 40% chance of rain

Time	Temperature (°C)	pН	Conductivity (µS/cm)	Clarity
15:30	13.0	7.65	641	Slightly cloudy

# APPENDIX G FIELD GAS CHROMATOGRAPH ANALYSIS RESULTS

### SECTION G.1 INTRODUCTION

This appendix describes the field gas chromatography (GC) analysis results of the <u>Addendum RCRA Facility Investigation for Sites No. 17, 18, and 21</u> at the Minnesota Air National Guard Base, Duluth, Minnesota. A PHOTOVAC 10S50 portable gas chromatograph was used for field analysis. A summary of the GC results are presented in Table G.1 followed by the raw data.

Table G.1 GC Screening Results 148th FG, Duluth ANGB, Duluth, Minnesota

				Volatile Cor	Volatile Concentrations (ppb)		Total
Boring	Sample Interval (ft. BLS)	Sample Mass (grams)	Benzene	Toluene	Ethylbenzene	Xylenes	BTEX (ppb)
100 PPB BTEX	STANDARD	NA	100	100	300		200
021-025BH	1.5-2.0	10	82	9	ND	ND	88
021-025BH	10.0-11.0	10	ND	ND	ND	ND	ND
021-025BH Reshot	10.0-11.0	10	ND	ND	ND	ND	ND
021-025BH	14.5-15.0	12	58	ND	ND	ND	58
021-023BH	1.5-2.0	12	73	ND	ND	ND	73
1. PPM BTEX	STANDARD	NA	1,000	1,000	1,000		3,000
021-023BH	10.5-11.0	12	1,110	118	61		1,289
021-022BH Reshot	6.0-6.5	10	395	287	220		905
021-024BH	16.5-17.0	12	1,070	ND	ND		1,070
021-022BH	11.5-12.0	10	142	10	11		163
1 PPM BTEX	STANDARD	NA	1,080	976	2,710		4,766
AIR BLANK	NA	NA	ND	ND	ND	ND	UN
021-022ВН	14.5-15.0	10	240	12	12		264
021-021BH Reshot	14.5-15.0	12	105	ND	59		164
021-023ВН	14.5-15.0	10	103	ND	ND		103
021-024BH	10.5-11.0	14	6,130	146	776		7,052
1 PPM BTEX	STANDARD	NA	1,000	1,000	3,000		5,000
AIR BLANK	NA	NA	ND	ND	ND		ND
021-024BHª	10.5-11.0	14	1,080	98	382		1,548
1 PPM BTEX	STANDARD	NA	1,130	1,110	3,400		5,640

Table G.1 (Continued)
GC Screening Results
148th FG, Duluth ANGB, Duluth, Minnesota

				2000			
	0.000	Sec. 11. 11.		Volatile Cor	Volatile Concentrations (ppb)		Total
Boring	Sample interval (ft. BLS)	Sample Mass (grams)	Benzene	Toluene	Ethylbenzene	Xylenes	BIEX (ppb)
100 PPB BTEX	STANDARD	NA	100	100	100	200	200
AIR BLANK	NA	NA	ND	ND	ND	ND	ND
021-024BH	2.0-2.5	10	ND	ND	ND	QN	ND
021-021BH	2.0-2.5	10	ND	ND	ND	ND	ND
021-020BH	10.5-11.0	10	ND	ND	ND	QN	ND
021-021BH	6.5-7.0	10	ND	ND	ND	QN	ND
021-024BH	6.5-7.0	10	ND	ND	ND	ND	ND
100 PPB BTEX	STANDARD	NA	100	100	100	200	200
AIR BLANK	NA	NA	ND	ND	ND	QN	ND
021-024BH	6.5-7.0	10	ND	ND	ND	ND	ND
021-021BH	11.5-12.0	10	79	10	ND	ND	68
021-022BH	1.0-1.5	10	ND	ND	ND	ND	ND
021-020BH	6.5-7.0	12	100	ND	ND	QN	100
021-020BH	1.5-2.0	12	ND	ND	ND	QN	ND
100 PPB BTEX	STANDARD	NA	100	97	105	203	505
AIR BLANK	NA	NA	ND	ND	ND	ND	ND
021-018BH	2.0-2.5	10	ND	ND	ND	ND	ND
021-018BH	13.5-14.0	12	QN	ND	ND	ND	ND
021-018BH	9.5-10.0	12	ND	ND	ND	ND	ND
021-019BH	14.5-15.0	10	7	ND	ND	ND	7
021-019BH	1.5-2.0	12	ND	ND	ND	QN	ND

Table G.1 (Continued)
GC Screening Results
148th FG, Duluth ANGB, Duluth, Minnesota

Table G.1 (Continued)
GC Screening Results
148th FG, Duluth ANGB, Duluth, Minnesota

			(				
				Volatile Cor	Volatile Concentrations (ppb)		Total
Boring	Sample Interval (ft. BLS)	Sample Mass (grams)	Benzene	Toluene	Ethylbenzene	Xylenes	BTEX (ppb)
100 PPB BTEX	NA	NA	100	107	113	217	537
AIR BLANK	NA	NA	QN	ND	ND	QN	QN
021-026MW	2.0-2.5	10	ND	ND	ND	ND	QN
021-026MW	8.5-9.0	10	ND	ND	ND	ND	QN
021-026MW	11.0-11.5	12	ND	ND	ND	QN	ND
021-026MW	16.5-17.0	10	ND	ND	ND	QN	ND
100 PPB BTEX	STANDARD	NA	100	101	105	194	200
AIR BLANK	NA	NA	ND	ND	ND	ND	ND
100 PPB BTEX	STANDARD	NA	100	100	100	200	500
AIR BLANK	NA	NA	ND	ND	ND	ND	ΩN
017-016ВН	1.5-2.0	12	ND	ND	ND	ND	ND
017-016ВН	5.5-6.0	12	ND	ND	ND	ND	ND
017-016ВН	9.5-10.0	16	ND	ND	ND	QN	ND
017-015BH	1.0-1.5	12	ND	ND	ND	ND	ND
017-015BH	5.5-6.0	12	ND	ND	QN	ND	ND
100 PPB BTEX	STANDARD	NA	100	100	100	200	500
AIR BLANK	NA	NA	ND	ND	ND	ND	ND
017-015BH	5.5-6.0	12	ND	ND	ND	ND	ND
017-015BH	9.0-9.5	12	ND	ND	ND	ND	ND
017-013BH	5.5-6.0	10	ND	ND	ND	ND	ND
017-013BH	2.0-2.5	12	ND	ND	ND	ND	ND

Table G.1 (Continued)
GC Screening Results
148th FG, Duluth ANGB, Duluth, Minnesota

				Volatile Cor	Volatile Concentrations (ppb)		Total
· Boring	Sample Inferval (ft. BLS)	Sample Mass (grams)	Benzene	Toluene	Ethylbenzene	Xylenes	BTEX (ppb)
017-013BH	9.5-10.0	12	QN	ND	ND	ND	ND
100 PPB BTEX	STANDARD	NA	100	93	84	170	447
AIR BLANK	NA	NA	ND	ND	ND	QN	QN
100 PPB BTEX	STANDARD	NA	100	100	100	200	200
AIR BLANK	NA	NA	ND	ND	ND	ΩN	QN
017-014BH	2.0-2.5	12	ND	21	ND	ΠN	21
017-014BH	4.5-5.0	10	ND	ND	ND	ΩN	QN
017-014BH	9.5-10.0	12	ND	22	ND	GN	22
017-012ВН	2.0-2.5	12	ND	21	ND	ND	21
017-012ВН	5.5-6.0	12	ND	20	ND	ND	20
100 PPB BTEX	STANDARD	NA	100	92	95	180	467
AIR BLANK	NA	NA	ND	26	ND	ND	26
017-012BH	9.5-10.0	14	ND	25	ND	ND	25
017-011BH	2.0-2.5	10	ND	25	ND	ND	25
017-011BH	5.5-6.0	10	ND	ND	ND	ND	ND
017-011BH	9.5-10.0	10	ND	ND	ND	ND	ND
100 PPB BTEX	STANDARD	NA	100	100	100	200	200
AIR BLANK	NA	NA	ND	ND	ND	ND	QN
017-010BH	4.5-5.0	12	ND	ND	ND	ND	ND
017-010BH	9.5-10.0	12	ND	ND	ND	ND	ND
017-017BH	1.5-2.0	10	ND	ND	ND	ND	QN

Table G.1 (Continued)
GC Screening Results
148th FG, Duluth ANGB, Duluth, Minnesota

	1011	our ro, Dandun A	MOD, Duint	AND, Duineil, Millinesona			
	17 - 17 - 17 - 10	34 1 70		Volatile Con	Volatile Concentrations (ppb)		Total
Boring	Sample Interval (ft. BLS)	Sample Mass (grams)	Benzene	Toluene	Ethylbenzene	Xylenes	BTEX (ppb)
017-017ВН	5.5-6.0	10	QN	ND	ND	ND	ND
017-017BH	9.5-10.0	10	ND	19	ND	ND	19
100 PPB BTEX	STANDARD	NA	100	105	90	177	472
AIR BLANK	NA	NA	ND	ND	ND	ND	ND
017-018BH	2.0-2.5	10	ND	ND	ND	ND	ND
017-018BH	4.5-5.0	10	ND	ND	ND	ND	ND
017-018BH	9.5-10.0	12	ND	ND	ND	ND	ND
100 PPB BTEX	STANDARD	NA	100	100	100	200	200
AIR BLANK	NA	NA	ND	ND	ND	ND	ND
017-019ВН	1.5-2.0	12	ND	ND	ND	ND	ND
017-019BH	5.0-6.0	10	ND	ND	ND	ND	ND
017-019ВН	9.5-10.0	10	ND	ND	ND	ND	QN
017-020ВН	2.0-2.5	12	ND	ND	ND	ND	ND
017-020ВН	5.5-6.0	10	ND	ND	ND	ND	UN
100 PPB BTEX	STANDARD	NA	100	101	92	180	473
AIR BLANK	NA	NA	ND	ND	ND	ND	QN
017-020BH	9.5-10.0	12	ND	ND	ND	ND	QN
100 PPB BTEX	STANDARD	NA	100	66	87	169	455
AIR BLANK	NA	NA	ND	ND	ND	ND	QN
100 PPB BTEX	STANDARD	NA	100	100	100	200	200
AIR BLANK	NA	NA	ND	ND	ND	ND	ND

Table G.1 (Continued)
GC Screening Results
148th FG, Duluth ANGB, Duluth, Minnesota

				Volatile Cor	Volatile Concentrations (ppb)		Total
Boring	Sample interval (ft. BLS)	Sample Mass (grams)	Benzene	Toluene	Ethylbenzene	Xylenes	BTEX (ppb)
021-009MW	GROUNDWATER	10 ml	QN	QN	ND	ND	QN
021-010MW	GROUNDWATER	10 ml	ND	ND	ND	ND	ND
021-014MW	GROUNDWATER	10 ml	ND	ND	ND	ND	ND
021-026MW	GROUNDWATER	10 ml	ND	ND	ND	ND	ND
018-006ВН	2.5	10	ND	ND	ND	ND	ND
100 PPB BTEX	STANDARD	NA	100	100	100	200	500
AIR BLANK	NA	NA	ND	ND	ND	ND	ND
018-006ВН	1.7	10	ND	ND	ND	ND	ND
017-010BH	1.5-2.5	10	ND	ND	ND	QN	ND
018-007BH	2.5	10	ND	ND	ND	ND	QN
100 PPB BTEX	STANDARD	NA	100	100	100	200	500
AIR BLANK	NA	NA	ND	ND	ND	ΩN	ND
021-004SD	SURFACE SEDIMENT	10	ND	ND	ND	ND	ND
021-005SD	SURFACE SEDIMENT	10	ND	ND	ND	ND	ND
021-006SD	SURFACE SEDIMENT	10	ND	ND	ND	ND	ND
021-007SD	SURFACE SEDIMENT	12	ND	ND	ND	ND	ND
018-007BH	0.8-1.3	10	ND	7	215	1,224	1,446
1 PPM BTEX	STANDARD	NA	1,000	1,000	1,000	2,000	5,000
AIR BLANK	NA	NA	ND	ND	ND	ND	ND
018-007BH	0.8-1.3	10	ND	ND	99	ND	99
018-007BH	2.5	10	ND	3,550	3,220	4,090	10,860

GC Screening Results-Soil 148th FG, Duluth ANGB, Duluth, Minnesota Table G.1 (Concluded)

				Volatile Cor	Volatile Concentrations (ppb)		Total
Boring	Sample interval (ft. BLS)	Sample Mass (grams)	Benzene	Toluene	Ethylbenzene	Xylenes	BIEX (ppb)
1 PPM BTEX	STANDARD	NA	1,000	666	951	1,910	4,860
018-007BH⁵	2.5	10	24	616	768	1,020	2,428
018-007BH	0.8-1.3	10	99	ND	ND	ND	99
018-007BH [€]	2.5	10	12	239	331	432	1,010
100 PPB BTEX	STANDARD	NA	100	100	100	200	200
AIR BLANK	NA	NA	ND	ND	ND	ND	ND
018-007BH	0.8-1.3	10	ND	10	295	1,590	1,900
018-007BH ^d	0.8-1.3	10	ND	ND	166	921	1,087
100 PPB BTEX	STANDARD	NA	100	96	94	283	573
AIR BLANK	NA	NA	ND	ND	ND	ND	ND

4X dilution injection.
5X dilution injection.

BH - Borehole, MW - Monitoring well.

PPB/ppb - Parts per billion. BTEX - Benzene, Toluene, Ethylbenzene, and Xylenes. ft. BLS - feet below land surface.

STANDARD - BTEX calibration standard.

Reshot - 2nd injection of an interval's headspace. NA - Not applicable. ND - Non detect.

e - 10X dilution injection.
d - 2X dilution injection.
PPM - parts per million.

GROUNDWATER - 10 ml groundwater sample. SURFACE SEDIMENT - surface sediment sample.

FIELD GC RESULTS

## Duluth Air National Guard Base, Duluth, Minnesota

			inonai Guai		Concentra			
Boring	Sample Interval (ft. BLS)	Sample Mass (grams)	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	o- Xylene	Total BTEX
100 PPB BTEX			100	100	100	200	100	- 600
1 PPM BTEX			1,000	1,000	1,000	2,000	1,000	6,000
10 PPM BTEX			10,000	10,000	10,000	20,000	10,000	60,000
AIR BLANK			1	1	6	9	ND	17
021-026BH	8'-10'	10	1	- 3	ND	ND	ND	4
021-026BH	4'-6'	10	1	2	4	5	ND	12
100 PPB BTEX			106	103	98	188	68	563
100 PPB BTEX	<b>-</b> -		100	100	100	200	100	600
1 PPM BTEX			1,000	1,000	1,000	2,000	1,000	6,000
10 PPM BTEX			10,000	10,000	10,000	20,000	10,000	60,000
AIR BLANK			1	12	ND	83	20	116
021-027BH	4'-6'	10	1	3	ND	31	11	56
021-027BH	8'-10'	10	ND	3	3	8	4	18
AIR BLANK			2	1	ND	ND	ND	3
021-028BH	0.5'-2.5'	10	ND	2	2	3	2	9
021-028BH	8'-10'	10	ND	1	2	3	3	9
100 PPB BTEX			97	70	62	119	51	399
100 PPB BTEX	<del></del>		96	92	87	178	93	546
RECAL			100	100	100	200	100	600
AIR BLANK			1	ND	ND	ND	ND	1
017-024BH	0.5'-2.5'	10	2	ND	13	ND	22	37
017-024BH	4'-6'	10	4	1	ND	44	ND	49
017-025BH	0.5'-2.5'	10	6	1	4	9	ND	20
017-024BH	8'-10'	10	7	ND	11	ND	3	21
017-025BH	4'-6'	10	6	1	4	ND	ND	11
100 PPB BTEX			96	81	64	115	108	464
RECAL			100	100	100	200	100	600

AIR BLANK			5	ND	4	ND	4	13
017-022BH	0.5'-2.5'	10	5	3	7	12	1	28
017-023BH	0.5'-2.5'	10	3	3	7	9	ND	22
017-023BH	4'-6'	10	10	3	37	98	ND	148
017-018BH	0.5'-2.5'	10	13	3	4	ND	ND	20
017-028BH	4'-6'	10	5	ND	8	ND	ND	13
100 PPB BTEX			2	91	96	138	31	358

BH - Borehole.

RECAL - Recalibration.

ml - milliliters.

PPM - Parts per million.

PPB/ppb - Parts per billion. ND - Non detect.

ft. BLS - Feet Below Land Surface.

BTEX - Benzene, Toluene, Ethylbenzene, and Xylenes.

SITE:_	Dahath	ANGB,	5,te	21
GAIN:				

CARRIER GAS FLOW: 12 ul/min

GC OVEN TEMP: 40°C

ANALYSIS TIME: 400 = 1000

WINDOW: ±1000

MINIMUM AREA:

							Conc	entrations (p	pb)				
	Sample Interval	Sample Mass	Sample Dilution							Add	itional An	alytes	
Boring	(n. BLS)	(grams)	Factor	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	0-Xylene	Total BTEX				
opph sta			very	mes	51								
R BLANK			very	mess	У	·							
e OLANK				4									
BLMK			-	ч									
Y RUN	·· . —		5460	have	yim	Leay	Peak	5					
	INC	Rease	over	7em	p to	50	<						
RUN			SAME	AS	other	5							
y RUN			(1	(,	-//								
		R	eset	EV	ent 3	:	0.0	->	500.	) <u>se</u>	50~05		
RUN		Į.	stil	l has	peak	es No	t A	bad	A5	befo	Re		
RUN			"	",	"	1	,	"	"	/ ·			
RUN		61	1,	и	£1	. /*	(1	/1	′1	11			
RUN		и	1.	11	(1	17	",	',	"/				
			Reset (	Event	3:0.	0-70,	P 1	eset E	unt 5	-: 0	0 ->	500.0	يمك
Run		14	1	2 plus	line	4	e perge	in	the	modell	of the	pay	
		Reset	Even	13:0	0->3	€0.0 se	comb	Rise	t Cu	15	: 0.	070	0
y Run			Same	an d	lefore	with	E	8					
1 RUN				50	/								
					ŕ								
					_								

RATOR: J	oe Byrd,.	JR
----------	-----------	----

DATE: 12 July 94

SITE: Daluth ANGB Site 21
GAIN: 101 JB 100 JB 12 5
CARRIER GAS FLOW: 10.9 ul/min

GC OVEN TEMP: 40°C

ANALYSIS TIME: 400 sec

WINDOW: 10%

MINIMUM AREA: 50 m Vs

							Conc	entrations (p	pb)			
	Sample Interval	Sample Mass	Sample Dilution							Add	itional Ana	ilytes
Boring	(n. BLS)	(grams)	Factor	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	0-Xylene	Total BIEX			
100 ppb std		ABOR	ζ	RUN.	6	AIN ,	/S &	00	14166			
		Re	set	GA	in X	0	10					
DRY RUH												
00 106 54		ABOR	Z	Run	. 6.	8W 1	5	Soo	14160	<i>51</i>		
,,		Reso	1 60	tin 1	0 2							
DRY Lun	to	Pury	2									
100 ppb 57D		Re	set	6	FIN	to	5					
100 ppb 570		N		bood	Pe	AKS						
me pob 570		. ,		11		4/						
100 pp 570	!	6.	20 KS	bet	Lea							
100 pp 5td			11	11		Inca	eas E	ANA	Lysis	Tun	e Zo	450
100 mb std			((	"		u			11_	10	20	25 <b>00</b>
,,			Z	cresse	A	e F	ow	Ło	12.	is al	mir	
			Decia		7 25	4005			13.8	,		
100 pob std				6000	P	ctur	20	. ~	reneu		27	d 43
ooppb std				mlly.	54		. GRAZ			,		
021-025BH	1.5-2.0	10g	_	82	6	NO	20	an	8 <b>8</b>			
	10.0 - 11.0	109		סע	20	ND	ND	ND	an			
		Reshoot		ND	22	ND	ND	ND	ÆN.			
021-025811		129		28	MD	20	מא	ND	58			
21-023 Bit		129		73	ND	MD	4N	Mp	73			
100 ppb std	check			176	89		77		542	Rock	L. GRA	to
oopab std	- CAECY			Rese		Sain	<i>&gt;</i>	- 11	7		K. A.	
00 pp 5 5 f				Resit	7	um	all	is q	oad	<u> </u>		

OPERATOR: Joshyal Ja

DATE: 13 July 1994

SITE: DALUTH ANGB Site 21
GAIN: # 3 10 , 2 fm 19PM
CARRIER GAS FLOW: 13.8 ul /mm

GC OVEN TEMP: 40°C

ANALYSIS TIME: 430 sec

WINDOW: ±10%

MINIMUM AREA: 50 AFE 33 200 VS

							Conc	entrations (p	pb)				
	Sample Interval	Sample Mass	Sample Dilution							Add	itional Ana	ilytes	
Boring	(n. BLS)	(grams)	Factor	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	0-Xylene	Total BTEX				
IR BLANT	<			38	ND	an	NO	ND	38				
people std				128	46	2	74	ND	448	Rie	choat		
ppb std				91	91	2	72		454				
-1-023BH	105-11.0	122		NO	290	9	8	ND	388				
	HAD	SPIXE	25 0	ff c	HARL.	Res	et 6	Ain X	05	m /	REA L	100	
oppb std				72	80	2'	74	MD	426				
' '				ER	45E	LIBRA	Ry 1	and.	recal	GRAL	<u>.                                    </u>		
3 ppb std	AIR E	LANK		22	ND	ND	ND	NO	22				
21-023814	10.5-11.0	129		647	333	13	37	NO	1,120	cha	ny 51	mtas	
PPM	AIR B	LANK											
PPM				Look	118 g	reat	Ba	nzeve	(a)	7.9	<i>- و√</i>	50	م√ر
1-023BH	10.5-11.0	129		1,110	118	6	1	ND	1,289				
21-022 811	6.0-6.5	103		315		Printer	rot	work	-				
leshoot	-	-		395	287	23	20	M	902				
21-02484	16.5-17.0	129		1,070	N7D	DU	ND	NO	1,070				
1-02261	11.5 - 12.0	103		142	10	1	1	ND	163				
13821834	1	PPM	_	1,080	976	2,	710	ND	4,766				
AIR	BLANK		1	ND	ND	ND	ND	NA	<u>4</u> N				
1-022 BH	14.5-15.0	10 g	ſ	240	12	1	2	MD	264				
11-021 BH	14.3 -15.0	129	_	PRIS	ter	Mal	Func	LION					
Reshoo	Ł			105	<i>ي</i> 2	5	9	du	164				
21-02384		109	ſ	103	MΦ	NO	, wo	NO	<i>1</i> 03				
1-0248#	10.5-11.0	149		6,130	146	7	76	MD	7,052				
IPPM S	TD		_	845	674	2,	010	MD	3,529				

ERATOR: Janbyulfa

DATE: 13 July 94

SITE:_	Dalu	M	40	GB	_ (	Site	21
GAIN:_					<u> </u>		
			 <i>7.</i> '				

CARRIER GAS FLOW: 13.8 L/Min

GC OVEN TEMP: 40°C

ANALYSIS TIME: 430 sec

WINDOW: 10%

MINIMUM AREA: 41: ,42:20~1/5

Concentrations (ppb)

				Concentrations (ppb)								
	Sample Interval	Sample Mass	Sample Dilution							Addi	tional An	alytes
Boring	(n. BLS)	(grams)	Factor	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	0-Xylene	Total BIEX			
IPPM S	7D	ERAS	e	42.	Recr	L, bent	e £	191	M			
AIR BLANK			-	ND	20	an	an	NO	4u			
										25	ul 1A	Ject10N
021-02404	10.5-11.0	142	4X	1,080	86		32	ND	1,548	<b>←</b>	ر	
I PPM ST	<b>)</b>			1,130	1,110	3,40	00	NA	5,640			
AIR BLA	NK			ND	ND	ND	NO	ND	DN			
												<u> </u>
			<u> </u>									
									_			
			i <del></del>									
											· · · · · ·	
											<del></del>	

OPERATOR: Joubyrd 12

DATE: 13 July 94

SITE:_	Daluth	ANGB	. SX	£ 2/
GAIN:	10			
CARRI	ER GAS F	LOW:	Mul	lmin
			/	•

GC OVEN TEMP: 40°C

ANALYSIS TIME: 430 AUC

WINDOW: ± 10%

MINIMUM AREA: 50 AVS

							Совс	entrations (p	pb)				
	Sample Interval	Sample Mass	Sample Dilution							Add	itional An	ilytes	
Boring	(ft. BLS)	(grams)	Factor	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	0-Xylene	Total BTEX				
es ppb		Misse	d	Shot									
by fun	$\geq \leq$	$\geq \leq$	$\geq \leq$	$\geq \leq$	$\times$	$\geq \leq$	$\geq$	$\geq \leq$	$\geq$	$\geq$	$\geq$	$\geq$	
agg oc	$\geq \leq$	GAIN	p is	700	HI6H	· Re	set	Lo	5.	$\geq \leq$	$\geq$	$\geq$	
	$\geq \leq$	INC	REASE	AI	R FLO	w to	12	w /m	in	$\geq \leq$	$\geq$	$\geq$	
o pob	$\geq \leq$	Looks	god.	5et	AREA	to	SOMVs		L. GRA	<u>te</u>	$\geq$	$\geq \leq$	
o polo IR				MD	وم	α٥	<b>√</b> 20	ND	ND				
21-024	2.0 - 2.5	103		4N	νD	ND	NO	ND	NA				╝
1-0218H	2.0 - 2.5	104		ND	NO	NO	ND	<u>an</u>	ND				
·- 020 BH	10.5-11.0	109		ND	an	NO	an	NO	ND				╝
-021 8H	6.5-7.0	109		ND	ND	ND	NO	ND	ND				╝
1-024 BH	65-7.0	103		NO	ND	NÞ	an	NO	ND				
ppb std				88	86	31	92	ND	297				
	RECAL	> <	>>	100	98	35	105	ND	338	Reca	libra	& Ne	ade
ph std	$\geq \leq$				AR	EA =	50	mV3					╝
IR				ND	ATD.	AD.	ND	ND	ND				
-024 BH	6.5-7.0	109	-	ND	ND	BN	ND	70	4N				
-021 BH	11.5-12.0	109	_	79	10	αu,	ND	MD	89				╝
022 BH	1.0 -1.5	109		an	an	ND	an	20	20				
020 Blt	6.5-7.0	129	_	100	MD	NA	ND	NB	100				╝
-020 BH	1.5-2.0	123		ay	20	n D	٥٦	NO	NO				
PPb		1		89	87	94	181	ND	451	$\geq <$	> <	>	
	CAL	> <	$\searrow$	100	97	105	203	an	505	> <		$\supset$	
RB	LANK			au	ND	BN	20	MD	ard (				

RATOR: Jab yelfr

DATE: 14 July 84

SITE:	DULUTH	ANGB	Site	21
GAIN:_	5		7	
CARRIE	R GAS FLO	)W· /2	. 1/1	· -

GC OVEN TEMP: 40°C

ANALYSIS TIME: 430 acc

WINDOW: ±10%

MINIMUM AREA: 50 mV

							Сопс	entrations (p	pb)			
	Sample Interval	Sample Mass	Sample Dilution							Add	itional Ans	liytes
Boring	(ft. BLS)	(grams)	Factor	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	0-Xylene	Total BIEX			
0Z1-018BH	2.0 -2.5	109		44	ND	NO	NO	ND	ИИ			
021-01884	13.5 - 14.0	129	-	ND	NΑ	90	Ви	ND	ND			
021-018 BH	9.5 - 10.0	. 123		ND	au	ND	ND	ND	ND			
021-019 BH	14.5-15	109		7	an	NO	AN.	NO	7			
021-019 BH	1.5-2.0	129		ND	۵۵	an	ND	ND	ND			
100 ppb	STD	_		80	67	66	109	ND	322	$\geq \leq$	$\geq \leq$	$\geq$
	CA	L	><	100	84	83	187	N.D	454	$\geq$	$\geq$	$\geq$
AIR BLANK	$\nearrow$	$\sim$	X	D	2	40	مم	20	رد ر	$\geq \leq$	$\geq$	$\times$
021-016 BH	2.0-2.5	129	_	۵	2	NO	20	ив	ND			
021 - 016 BH	6.5-7.0	10 3		2	6 2	20	an	ND	ND			
021-016 BH	10.5-11.0	108		D	ND	2	ND	ND	45			
021-019 81+	6.5-7.0	109	-	20	ND	A.V.	ND	ND	ND			
021-01984	10.5-11.0	129	1	16	ND	ND	W0	an	16			
b da con	$\geq \leq$	$\times$	X	127	106	102	164	۵۷	499	$\geq \leq$	$\geq \leq$	$\geq \leq$
	CAL	$\sim$	> <	100	83	80	128	ND	391	$\geq \leq$	$\geq$	><
100 ppb	Recal	Ibrate	>>	)			_	-		$\geq$	$\geq$	$\searrow$
ALR BLANK	$\geq <$	$\geq \leq$	>>	40	۸۵	20	NP	~0	ND	$\geq$	$\geq$	$\geq$
021 - 015 BH	1.5-2.0	109		ەىم	41	NO	NO	25	2			
021-015 BH	6.5-7.0	109		AN	ND	20	an	an	25			
021-015BH	10.5 - 11.0	129		N-D	4.0	<i>a</i> -u	νb	ND	M			
021-015BH	13.0 - 13.5	109		~n∆	מא	44	BN	<i>\</i> 0	20			
100 ppb	$\geq \leq$	$\geq <$	><	85	79	68	133	Q-W	365	$\geq \leq$	$\geq \leq$	$\geq \leq$
	CAL	><	$>\!\!<$	100	93	81	157	NO	431	$\geq \leq$	$\geq \leq$	$\geq \leq$
AIR BLANK	$\geq <$	> <	$>\!\!<$	an	an	WO	NO	750	ND	$\geq \leq$	$\geq <$	$\searrow$

OPERATOR: Journal Gr

DATE: 14 July 94

SITE: DULUTH ANGB
GAIN: 5

CARRIER GAS FLOW: 12.3 pl/mm

GC OVEN TEMP: 40°C

ANALYSIS TIME: 430 sec

WINDOW: ±10%

MINIMUM AREA: 50 mVs

			Concentrations (ppb)								
Sample Interval (ft. BLS)	Sample Mass (grams)	Sample Dilution Factor	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	0-Xylene	Total BIEX	Add	itional Ana	ilytes
$>\!\!<\!\!<$	$\times$	X	DID	NOT	set	gas	FLOCO	RATE	$\geq \leq$	$\boxtimes$	$\searrow$
$\nearrow \langle$	$\times$	X	Good	Pickuse		Set	L. GRAZ	<b>Y</b>	$\geq$	$\geq$	><
><	$\times$	X	N D	AN	ND	ND	ИВ	ND	$\geq \leq$	$\geq$	$\geq \leq$
2.0-2.5	123	1	<b>ν</b> Δ	70	NB	ND	NB	44			
5.5-6.0	109	-	۵	A DA	a 0	20	NO	ND			
0.5-11.0	129		ND	an	ND	ND	MD	ND			
4.5-15.0	129		מא	۵۵	NΔ	ND	N0	ND			
$\geq \leq$	$\geq <$	$>\!\!<$	87	95	100	193	ND	475	$\geq \leq$	$\geq$	$\searrow$
$\geq \leq$	$\geq <$	$>\!\!<$	100	107	113	217	MD	537	$\geq \leq$	$\geq$	$\geq \leq$
$\geq \leq$	$\geq \leq$	$>\!\!<$	AN	an	44	ДИ	מא	NĎ	$\geq \leq$	$\geq$	$\searrow$
2.0 - 2.5	109		ND	ND	DN	ND	AN	ND			
8.5-9,0	109		ND	ND	ND	ND	ND	ND			
1.8-11.5	129	_	40	NB	ND	NΔ	ND	ΝĎ			
6.5-17.0	109		ΔV	an	ND	ND	ND	NO			
$\geq <$	><	><	115	116	120	223	an	574	$\geq \leq$	$\geq \leq$	> <
><	$\geq <$	$>\!\!<$	100	101	105	194	ND	500	$\geq \leq$	$\geq \leq$	$\geq \leq$
$\geq \leq$	$\geq \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$\searrow$	NA	du	<b>~</b> b	ИВ	ND	20	$\geq \leq$	$\geq$	$\geq \leq$
	Interval (ft. BLS) 2.0-2.5 5.5-6.0 0.5-11.0 4.5-15.0 2.0-2.5 2.5-9.0 1.8-11.5	Interval (ft. BLS) (grams)  2.0-2.5 (23  5.5-6.0 (03  0.5-11.0 (123  4.5-15.0 (123  2.0-2.5 (103  2.5-9.0 (03  1.8-11.5 (129	Interval (ft. BLS) (grams) Factor  2.0-2.5 123 —  5.5-6.0 109 —  0.5-11.0 129 —  2.0-2.5 109 —  2.5-9.0 109 —  1.8-11.5 129 —	Interval (ft. BLS) (grams) Factor  Benzene  DID  Good  ND  2.0-2.5 123 — ND  5.5-6.0 103 — ND  9.5-10.0 129 — ND  9.5-15.0 129 — ND  2.0-2.5 109 — ND  2.0-2.5 109 — ND  1.8-11.5 129 — ND  1.8-11.5 129 — ND  1.5-13.0 103 — ND  1.5-13.0 103 — ND	Interval (ft. BLS) (grams) Factor  Benzene Toluene  DID NOT  Good Pickee  ND ND ND  2.0-2.5 123 — ND ND  5.5-60 109 — ND ND  4.5-150 129 — ND ND  2.0-2.5 129 — ND ND  87 95  100 107  ND ND  ND ND  2.0-2.5 109 — ND ND  1.8-11.5 129 — ND ND  115 116  100 101	Interval (ft. BLS) (grams) Factor Benzene Toluene benzene    DID NOT Set	Sample Interval (ft. BLS) (grams)   Sample Dilution (ft. BLS) (grams)   Sample Dilution (grams)   Benzene   Toluene   benzene   Xylene	Sample Interval (ft. BLS) (grams) Factor  Benzene Toluene benzene Xylene 0-Xylene  DID NOT Set AAS FLOGO  Good Pickue, Set Libeae  ND ND ND ND ND ND ND  ND ND ND ND ND  ND ND ND ND ND  ND ND ND ND ND  ND ND ND ND ND  ND ND ND ND ND  ND ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND ND  ND ND ND  ND ND ND ND  ND ND ND  ND ND ND  ND ND ND  ND ND  ND ND  ND ND  ND ND  ND ND  ND ND  ND ND  ND ND  ND ND  ND	Sample Interval (ff. BLS)  Sample Mass (grams)  Benzene  Toluen benzene  Ethyl-benzene  Xylene  0-Xylene  BTEX  DID NOT Set JAS FLOGO RATC  Good Pickuse  NO N	Sample Interval (ff. BLS) (grams) Sample Dilution Factor Benzene Toluene benzene Xylene 0-Xylene BTEX    D   D   NOT   Set   JAS   Eloco   RATe	Sample   Interval (ft. BLS)   Sample   Mass (grams)   Factor

ERATOR: JanByrdfr

DATE: 15 July 1994

SITE: Daluth ANGB, Site 17

GAIN: ** \$ 10

CARRIER GAS FLOW: 13 pl/min

GC OVEN TEMP: 40°C

ANALYSIS TIME: 430 sec

WINDOW: 11076

MINIMUM AREA: 100 m/s

							Conc	entrations (p	pb)			
Boring	Sample Interval (ft. BLS)	Sample Mass (grams)	Sample Dilution Factor	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	0-Xylene	Total BIEX	Add	iitional And	alytes
100 ppb 520	$\geq \leq$	$\geq \leq$	$\geq \leq$							$\geq \leq$	$\geq$	$\geq$
		duc	ease	gai	n 16	10						ļ
های طوم ۱۹۵۰	$\geq \leq$	$\geq \leq$	>>	Z.Z Vs	<i>⇒</i> 100	pm13 -	etterg			$\geq \leq$	$\geq$	$\geq \leq$
AIR BLANK	$\geq \leq$	$\geq \leq$	$>\!\!<$	ND	NO	N. P	40	NO	NA	$\geq \leq$	$\geq \leq$	
METHANOL	$\geq \leq$	$\gg$	$\sim$	A.V.	ەىم	פיה	۵۷	~0	20	$\geq$	$\geq$	$\geq \leq$
017-01684	1.5-2.0	129		NO	~0	40	ND	NB	N0	-		
017-01684	5.5 - 6.0	129	}	NA	20	~0	20	~0	40			
017-0168H	9.5-10.0	163		ND	NO	NP	NA	ND	Ир			
017-015BH	1.0 -1.5	129		du	ND	ND	NO	ND	ND			
017-015 BH	5.5 - 6.0	124	1	20	ND	NO	ND	NO	ND			
100 ppb 5TD	$\geq \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	><	$>\!\!<$	90	86	80	217	מא	473	$\geq \leq$	$\geq \leq$	
CALIBRATE	$>\!\!<$	><	$\times$	100	95	89	242	ND	526	$\geq \leq$	$\geq$	$\geq \leq$
		ERASE	Li	RARY	. R	ecahi	BRALE				<u> </u>	
100 ppb STD	><	$\geq \leq$	$\times$	2.1 Vs	<b>→</b>	100ml	5 se	they		$\geq \leq$	$\geq$	$\geq \leq$
AIR BLANK	$\geq <$	$\geq \leq$	$>\!\!<$	ND	~	~0	~0	۵۵۰	NO	$\geq \leq$	$\geq$	$\geq \leq$
017-015814	5.5-6.0	129		ΔN	ND	NB	ND	an	ND			
017-0158H	9.0 - 9.5	129		ΔN	an	ND	ND	ND	No			
017- 013 BH	5.5 - 6.0	109		ND	u o	~0	NO	ND	NP			
017-013BH	2.0-2.5	129		20	20	NB	40	an	du			
017-013 BH	9.5-10.0	129		AB	ORT	ED		RUM	2			
017-013 BH	9.5-PID	122		20	~0	~ &	ND	40	ND			
100 ppb stb	$\geq <$	><	> <	80	74	67	136	~0	357	$\geq \leq$	$\geq$	
CALIBRATE	><	$\geq <$	> <	100	93	84	170	ND	447	$\geq \leq$		$\geq \leq$
AIR	><	><	> <	NB	W D	ND	46	NO	an	$\geq <$	$\geq$	

OPERATOR: Joebyn Ja

DATE: 18 July 1994

SITE: DULUTH ANGB, JIE 17

GAIN: 10

CARRIER GAS FLOW: 13 M/min

GC OVEN TEMP: 40°C

ANALYSIS TIME: 450 sec

WINDOW: ±107

MINIMUM AREA: 100 mV3

							Conc	entrations (p	pb)			
Boring	Sample Interval (ft. BLS)	Sample Mass (grams)	Sample Dilution Factor	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	0-Xylene	Total BYEX	Add	itional An	alytes
ey eun			> <								$\sim$	
0 ppb. 570				Gain	was n	et propre	ly set	Reset	K 10			
· ppb sro			$\supset \subset$	1.9 V3	<i>⇒</i> >	1		in area			X	$\overline{}$
R BLANK	><	$\supset \subset$	$\supset <$	25	NO	ND	ND	ND	ND		$\times$	X
7-01464	2.0-2.5	129		ND	21	NA	ND	NO	21			
7-014BH	4.5-5.0	109		20	۵۵	NA	NO	ND	ND			
7-01484	9.5-100	122		ND	22	n a	NA	20	22			
7-01284	2.0 - 2.5	129		۵۸	21	NO	ND	20	21			
7-012BH	5.5 - 6.0	129		an	20	an	مہ	NO	20			
ppb sto	X	><	$\supset <$	82	75	77	147	~0	381		>	
1Librate	$\searrow$	> <	><	100	92	95	180	~0	46 7		$\times$	
2 BLANK	><		$\times$	مہ	26	20	28	20	26		> <	
7-012 BH	9,5-10.0	145		ND	25	ND	NO	ND	25			
-011 BH	2.0 - 2.5	109		~ D	25	AN	NP	ND	25			
1-011 BH	5.5-6.0	109		40	20	40	~0	20	ND			
-011 BH	9.5-10.0	109		AN	N 0	~0	70	77	ND			
ppb sto	$\geq <$	><	><	117	108	97	184	107	730 7	*	$\times$	><
Librate	$\geq \leq$	><	><	100	93	8.3	158	92	526	$\times$	$\times$	
ppb sto	$\geq <$	><	><	2.5 Vs	⇒	100mV5				$\times$	> <	$\times$
2 BLANK	$\geq \leq$	><	$\times$	AN	4m	20	20	and	υĎ		>	$\supset$
-010BH	4.5-5.0	129		~a	~0	ND	20	NP	w 0			
-010 BH		129		۵ در	N-0	20	20	Cha	MP			
-017BH	1.5-2.0	109	~	ND	ND	20	מא	n D	NB			
-017 BH	5.5-6.0	109	_	ND	ND	no	40	ND	NP			

ERATOR: Jack gelfe

DATE: 19 July 1884

SITE: Daluth ANGB, Size 17

GC OVEN TEMP: 40°C

ANALYSIS TIME: 450 see

WINDOW: ±1070

MINIMUM AREA: 400 mVF

							Conce	entrations (p	pb)			
Boring	Sample Interval (ft. BLS)	Sample Mass (grams)	Sample Dilution Factor	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	0-Xylene	Total BTEX	Add	itional Anz	ilytes
017-017BH	9.5-100	109		ND	19	ND	ND	ND	19			
100 ppb 570		X		72	75	65	127	~0	339	$\supset$	$\times$	$\boxtimes$
CALIBRAte	$\times$	$\mathbb{X}$	$\searrow$	100	105	90	176	Nδ	472	$\geq$	$\times$	$\times$
AIR blank	><	$\times$	$\geq <$	N _D	ND	۵۵	NO	NO	20	$\geq$	> <	$\searrow$
100 ppb 5TO	><	><	><	//3	115	98	191	ND	517	$\geq \leq$	$\geq$	$\geq$
CALIBRATE  AIR blank  100 ppb sto  CALIBRATE	$\geq \leq$	$\geq \leq$	$\geq \leq$	100	102	86	169	ND	457		$\geq$	$\geq$
		<del></del>									l	
		· · · · · · · · · · · · · · · · · · ·						<u> </u>				
		:						-				
											<del>-</del>	
									****			
								<del></del>				

OPERATOR: Janbyndan

DATE: 19 July 1994

SITE: DULLUTH ANGB, SIte 17
GAIN: 10

CARRIER GAS FLOW: 12.6 pl/min

GC OVEN TEMP: 40°C

ANALYSIS TIME: 45°O 5005

WINDOW: ±10°70

MINIMUM AREA: 50 mVs

						Prakja.	Conc	entrations (p	pb)			
Boring	Sample Interval (ft. BLS)	Sample Mass (grams)	Sample Dilution Factor	Веплепе	Toluene	Ethyl- benzene	m,p- Xylene	0-Xylene	Total BTEX	Add	itional Ans	alytes
OPEDSTO	$\nearrow$	$\searrow$	><	1.3 Vs	=> 6	5.Ns	Set	\$ 50m	Vs	$\geq \leq$	$\searrow$	
in blank	$>\!\!<$	><	><	2	40	40	20	an	ИВ		>>	><
7-01284	2.0-2.5	103		<del>ه</del> ۸	٥٠٨	۵۵	ND	ND	~5			
17-018 BH	4.5-5.0	109		an	ه در	NO	NB	40	au			
7-01884	9.5-10.0	/Zz		N D	49	ho	ND	40	ND			
oppb STD	><	> <	$\times$	. 89	72	83	151	ND	395	$\geq$	$\geq$	
1Librate	><	$\searrow$	><	100	80	93	169	~B	442	$\geq$	$\geq$	
, ppb 570	$\geq <$	><	><	- <i>NE</i>	- C A	70	FO	45E		$\geq$	$\times$	
9Librate	$\geq <$	><	$\searrow$	10 6	BRAR		Rese			$\geq$	$\geq$	
1 pp 6 57P	$\geq <$	><	>>		び <b>⇒</b>	100 m	V3 5	ello			$\geq$	
IR BLANK	><	><	><	ND	d	<i>م</i> ۵	49	20	~D	$\geq$	$\geq$	
7-019 BH	1.5-2.0	129		NX	au	ND	ND	ND	ND			
7-019 BH	5.0-6.0	109		ND	~0	ΝĐ	وم	~0	W D			
2-019 BH	95-10.0	109		ND	νD	dη	ир	du.	ND			
7-020 BH	2.0-2.5	129		44	۵۸	NO .	NO	20	ND			
7-020011	5.5-6.0	109		NO	NB	ه بر	מיה	~o	₩D			
opbsT3	$\geq \leq$	><	><	84	85	タフ	150	ND	396	$\geq \leq$	$\geq$	><
L. GRAty	$\geq \leq$	$\geq \leq$	><	100	101	92	180	ND	473	$\geq \leq$	$\geq \leq$	
2 BLANK	> <	><	><	~o	2	۵ ب	40	42	ND	$\geq \leq$	$\geq$	
7-020 BH	9.5-10.0	129		ND	ND	20	هم	ND	ND			
106 500	$\geq \leq$	><	><	102	100	88	171	ND	461	$\geq \leq$	$\geq \leq$	
ALIBRATE	$\geq <$	><	><	100	99	87	169	NO	455	$\geq \leq$		
r blank	><	><	><	NID	ND	GCA	~D	ND	W.D	$\geq <$	$\geq$	$\times$

ERATOR: Jobydyk

DATE: 20 July 1994

SITE: DULUTH ANGE	GC OVEN TEMP: 40°C
GAIN: 10	ANALYSIS TIME: 450 se
CARRIER GAS FLOW: 12.9	WINDOW: 110%
	MINIMUM AREA: 100 m V5

							Conc	entrations (p	pb)			
Boring	Sample Interval (ft. BLS)	Sample Mass (grams)	Sample Dilution Factor	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	0-Xylene	Total BTEX	Ado	litional Ans	alytes
100 ppb sto	$\times$	$\mathbb{X}$	>	1.6 V	s ⇒	100mV3	Set	Eing		>		
AIR BLANK	$\times$	$\mathbb{X}$	$\mathbb{X}$	20	2	~0	~0	مہ	ND	>	>>	$\searrow$
021-009 MW		ioml	_	D س	۵۵	~0	۵۸	NO	~0			
021-018mw		10ml		44	۵۵	۵۵	an	No	ND			
021-014MW		ionl		MD	~0	NO	au	NB	~D			<u> </u>
021-026 MW		10ml		ND	۵۲	ND	~0	0 N	ND		<u> </u>	<u></u>
018-006 84	2,5	109		20	~ D	NO	NO	no	44			
100 ppb 570	$\geq \leq$	$\geq \leq$	><								$\geq$	$\geq$
CALIBRATION	><		><	No	eeds	In	ITIAL	CAL	breat.	$\geq$	$\geq$	$\geq$
100 ppb STD	$\geq <$	><	><	1,5 Vs	⇒	100mV3	Sell	2		$\geq$	$\geq$	$\geq$
Air BLANK	><	><	$\geq \leq$	an	ND	NO	ND	هم	מא	$\geq$	$\geq$	
018-006 BH	1.7'	109		~~ <b>o</b>	ND	ND	20	ND	ND			
017-010 BH	1.5-2.5	109		NA	ND	ND	ND	~ D	ND			
018-007 BH	2.5	103		~D	~B	45	N8	~0	ND	*		
100 pb 570	$\geq \leq$	><	$\geq \leq$	1.2.163	<b>⇒</b> •	10 m V3	Selle	<b>.</b>		$\geq \leq$	$\geq$	$\geq$
AR BLANK	$\geq \leq$	$\geq \leq$	$\geq \leq$	ND	ND	20	ND	20	ND	$\geq \leq$	$\geq$	$\geq$
021-00450	Sadionout	109		44	~0	ND	44	ND	200			
021-00550	sodimont	10g		ND	MD	ND	49	ND	40			
021-006 50	sediment	109		ND	a u	ДИ	20	ND	20			
021-00750	sedimont	129		N 0	20	an	WO	۸٥	0°0			
018-007BH	0.8-1.3	109		~6	7	215	NΔ	1,224	1,446			
IPP M BTEX	$\geq \leq$	$\geq <$	$\geq \leq$	DA	? <i>Y</i>	RUN	MIS	seb	sH	07		
	Set gan	in to	2.									
1.PPM STD	><	><	> <	4.0 r	, <b>\</b>	5.1	Min A	lacy to	20		><	

OPERATOR: Josephy DATE: 23 July 1994

* Something pegged-out chromatogiam. will reshort later.

SITE: DULUTH ANGB	GC OVEN TEMP: 40°C
GAIN: Z	ANALYSIS TIME: 450 sec
CARRIER GAS FLOW: 12.9 min	WINDOW: 10%
	MINIMUM AREA: 30 m/s

			a de y				Conce	entrations (p	pb)			
Boring	Sample Interval (ft. BLS)	Sample Mass (grams)	Sample Dilution Factor	Вепzеле	Toluene	Ethyl- benzene	m,p- Xylene	0-Xylene	Total BTEX	Add	itional Ana	lytes
R blank	$\mathbb{N}$	> <	$\supset <$	ND	ND	ND	ND	ND	ND	$\supset$	>	$\times$
8-007811	0.8'-1.3	109	_	NO	2	66	ND	20	66			
7-0078H	2,5	109		~0	3,550	3,220	4,090	20	10,860			
PPM BTEX	>>	><		1,080	1,080	1,030	2,060	ND	5,250	>>	X	$\times$
beate	$\times$	><	><	1,000	999	95-1	1,910	ND	4,860	$\geq$	$\times$	$\times$
1-007 BH	Z.5	109	5 X	24	616	768	1,020	70	2,428		-	
-007 BH	0.8 -1.3	109		66	ND	20	NO	~0	66			
-00781t	2.5	10g	10 X	12	239	33/	432	MD	1,010			
PPM 570	$\geq <$	$\bigvee$	$\nearrow$	935	892	830	1,650	~0	4,310		$\geq \leq$	$\geq \leq$
wheate	><	$\times$	><	1,000	953	887	1,760	Nρ	4,600	><	$\geq \leq$	><
R BLANK	><	$\times$	$\nearrow$	ND	2	20	20	ND	ND	>>	$\times$	><
	Rec	AL, BR	ente	40		100	PPA	3				
		Gain	10									
ore dag.	><	$\mathcal{N}$	X	1.2	~s =>	50	m Vs	Sett	Sy		$\geq \leq$	$\searrow$
eblank	><	><	>>	ΔN	۵۸	~0	NO	~b	ND	><	$\geq$	><
-007 BH	0.8-1.3	109		ND	10	295	امر	1,590	1,900			
-007 BH	0.8-1.3	109	2X	DU	مه	166	an	921	1,087			
· ppb 570	><	><	>>	96	92	91	179	9/	549	$\geq \leq$	$\geq$	>>
bente	$\geq \leq$	><	><	100	400AB	94	187	96	573	$\geq \leq$	$\geq$	> <
BLANK	$\geq \leq$	><	$\searrow$	ND	NO	ND	ND	ND	20	><	$\geq$	><

ERATOR: 1 Byed Jr

DATE: 23 July 1994

SITE: DULUTH ANGB INJECTION VOLUME: 100, L

GAIN: 1,000 GC OVEN TEMP: 40°C

CARRIER GAS FLOW: +13, L frain

ANALYSIS TIME: 150 sec

			who								
						Сопс	entrations (	opb)			*:
Analysis No.	Boring	Sample Interval (ft. BLS)	Sample Mass (grams)	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	o- Xylene	Total BETX		
19	100 PP3	$\searrow$	X	NO	o-xyl.	ene	Peak	(		$\bowtie$	X
70	100 PPB	><	$\searrow$	100	100	100	200	100	600	$\times$	$\geq$
ス1	1 PPM	$\geq \leq$	><	1,000	1,000	1,000	2,000	1,000	6,000	$\boxtimes$	$\geq$
22	10 PPM	$\geq \leq$	$\geq \leq$	10,000	10,00	19000	20,000	10,000	60,000	$\boxtimes$	$\times$
<i>Z</i> 3	AIR BLANK			1	1	6	9	ND	17	$\geq$	$\boxtimes$
24	025-004BH	10'-12'	10	1	4	4	8	ND	17		
25	025-004BH	18'-20'	10	1	3	ND	ND	ND	4		
26	021-026BH	8'-10'	10	1	3	ND	ND	ND	4		
27	021-026 BH KESHOT	4'-6'	10	1	2	4	5	ND	12		
28	025-004 BH	5'-7'	10	1	3	Z	6	ND	12	Reg	Lax.
29	100 PPB	><	$\times$	106	103	98	188	68	563	$\bowtie$	$\times$
				)							
					N	1					
	/		1	By	X	R					
		/!									
									/		
_						/				[	
					(						

		Analytes									
Calibrat	ion Information	Benzen <del>e</del>	Toluene	Ethylbenzene	m,p-Xylene	o-Xylene					
	Retention Time	64.2	126,1	258.4	277.8	324.5					
0.1 ppm	Response	201	130.8	79,9	58.9	9-1					
	Retention Time	64,6	126.5	259,4	278.4	325.8					
1 ppm	Response	5637	3045	1685	1097	<i>3</i> 39					
	Retention Time	65,2	127.7	260,2	278.4	325,3					
10 ppm	Response	17,771	19,993	10,465	6,731	1323					

OPERATOR:	Should R
_	777

DATE: 16 May 95

SITE: DULUTH ANG B
GAIN: 1,000
CARRIER GAS FLOW: 12 ul fmin

INJECTION VOLUME: 100 al
GC OVEN TEMP: 40°C
ANALYSIS TIME: 766 sec

		i de la companya de l				Conc	entrations (	ppb)			
Analysis No.	Boring	Sample Interval (ft. BLS)	Sample Mass (grams)	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	o- Xylene	Total BETX		
1	100 89B	$\langle$	$\times$	w	0-	xyLen	e			$\times$	X
2	100 PPB	$\geq \leq$	><	ATC	0	XY LO	ne			$\times$	$\times$
3	100 PPB	>	$\geq \leq$	100	100	100	200	100	600	$\geq$	$\times$
4	1 PPM	><	><	1,000	1,000	1,000	7,000	1,00	6,000	$\geq$	$\geq$
5	10 PPM	$\sim$	$\geq \leq$	10,000	19,000	10,000	29,000	1,000	60,000	$\geq$	$\times$
6	ALL BLANK	><	$\geq \leq$	1	12	ND	83	20	116	$\geq$	$\boxtimes$
7	0Z1-0Z7BH	4'-6'	10	1	_3	ND	3/	11	56		
8	021-027BH	8'-10'	10	ND	3	3	8	4	18		
9	AIR BLANK	$\searrow$	X	2	1	IND	ND	ND	3	$\boxtimes$	$\times$
10	021-028BH	0.5'-2.5'	10	ND	2	2	3	2	9		
1/	021-028 BH	8'-10'	20	ND	2	3	5	5	15		
12	100 PPB	$\searrow$	X	97	70	62	119	51	399	$\times$	$\times$
	RECAL	><	$\times$	100	100	100	200	100	600	$\times$	$\times$
13	AIR BLANK	$\times$	>	3	ND	1	ND	ND	4	$\geq$	$\times$
14	025-012BH	0,5-2,5	10	3	21	17	ND	39	80		
15	025-012BH	5'-7'	10	A Lot	of Pea	Ks bu	NO	Resting	5		
16	20 ML INJECTION 025-012 BH	5-7	10	ND	んり	WD	ND	ND	ND	Rest	to
17	025-012 BH	10'-12'	10	48	31	14	ND	14	97		
18	025-012 BH	18'-20'	10	41	46	NO	ND	ND	87		
19	100 PPB	><	$\times$	77	84	80	151	78	470	$\supset$	$\boxtimes$

					Analyte	<b>S</b>		
Calibrat	ion Information	Benzene	Toluene	Ethylbenzene	m,p-Xylene	o-Xylene		
	Retention Time	76.5	138.5	267.2	285,6	337,3		
0.1 ppm	Response	277	182	107	130	48		
	Retention Time	77.2	138.9	268, 2	286.6	<i>3</i> 37.3		
1 ppm	Response	7577	3536	2385	2445	1001		
	Retention Time	79.8	141.3	272.Z	289.8	341.0		
10 ppm	Response	31,558	26,021	18,552	18,370	5375		

OPERATOR: JByul Ja

DATE: 17 May 9.5

SITE: DULUTH AN6B GAIN: 1,000 CARRIER GAS FLOW: 12,11 /min

GC OVEN TEMP: 40°C ANALYSIS TIME: 500 500

						Conc	entrations (1	opb)			
Analysis No.	Boring	Sample Interval (ft. BLS)	Sample Mass (grams)	Benzene	Toluene	Ethyi- benzene	m,p- Xylene	o- Xylene	Total BETX		
	RECAL		><	100	100	100	200	100	600	X	X
20	AIR BLANK		$\geq <$	3	ND	1	ND	73	77	$\boxtimes$	$\times$
21	025-013 BH	05'-25	10	4	3	1	3	ND	11		
22	025-013 BH	5'-7'	10	3	2	20	ND	106	131		
23	025-013 BH	10'-12'	10	4	2	4	2	ND	12		
24	025-013 BH	18'-20'	10	10	17	3	ND	4	3#		
25	100 PPB	><	><	96	9z	87	178	93	546	$\times$	$\times$
	ReCal	><	>	100	100	10C	200	100	600	X	X
26	AIR BINNE 017-0243	><	$\times$	/	ND	ND	ND	ND	1	X	$\times$
27	017-02484	0.51-25	6	/	2	8	ND	/3	22		
28	017-024 BH	4'-6'	10	4	/	ND	44	ND	49		
29	07-02487	8-70'	75		By	Laga	~	~	1		
	017-025BH	0.5'-2.5'	10	6	/	4	9	ND	20		
30	017-024814	8'-10'	15	11	ND	16	ND	4	31		
3 <b>2</b>	017-025 814	4'-6'	10	6	1	4	ND	ND	11		
32	100 APB	$\supset <$		96	81	64	115	108	464	X	X
	RECAL		$\supset \subset$	100	100	100	700	100	600	X	X
33	AIR BLANK			5	ND	4	ND	4	13	X	X
34		0,5'-2.5'	10	5	3	7	12	1	28		
		0.5'-2.5"	Ю	3	3	7	9	ND	22		

		n Puden gevitte it Hallen Selba et e			Analyte	<b>3</b>		
Calibrat	tion Information	Benzen <del>e</del>	Toluene	Ethylbenzene	m,p-Xylene	•-Xylene		
	Retention Time	76.7	144.4	276.1	293.8	347		
0.1 ppm	Response	83,8						
	Retention Time							
1 ppm	Response							
	Retention Time							
10 ppm	Response							ļ

OPERATOR: 4B yalfR

DATE: 17 May 95

SITE:_	DULLYH	AN6B
GAIN:_	1,000	
CARRIE	ER GAS FLOW:_	12 ul/min

GC OVEN TEMP: 40°C
ANALYSIS TIME: 500 sec

						Conce	entrations ()	opb)	a Cara Such Cara Such Cara Such		
Analysis No.	Boring	Sample Interval (ft. BLS)	Sample Mass (grams)	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	o- Xylene	Total BETX		
36	017-023811	4'-6'	10	10	3)	37	98	ND	148		
37		0.5'-2.5'	10	13	3	4	ND	ND	20		
38	017-028 BH	4'-6'	6	3	ND	5	ND	ND	8		
39	ICC PPB	$\geq \leq$	$\times$	2	91	96	138	3/	358	$\boxtimes$	$\boxtimes$
1											'
				)							
ĺ					V		/				
	/				1	//					$\prod$
	- /					1/1					
				d		K D					
			, ^	L X		17/					
		<u>Σ</u> / (				/ / /			/	/	
	1 AIN			V					/		
	KKIX			·/		/				/	
			///								
	U /		V	/		V	/			1	7
						7			/	/	$\int$
										V	
										1/	/

			Analytes								
Calibrati	on Information	Benzene	Toluene	Ethylbenzene	m,p-Xylene	o-Xylene					
	Retention Time										
0.1 ppm	Response										
	Retention Time										
1 ppm	Response										
	Retention Time			-							
10 ppm	Response										

OPERATOR: ByulfR

DATE: 17 May 95





















SAMPLE LIBRARY 1 JUL 13 1994 13:57 AMALTSIS # 20 J BYRD, JR. ANALYSIS # 20 J BYRD, JR.
INTERNAL TENP 33 DULLUTH ANGS GAIN PEAK R.T. AREA/PPM

COMPOUND NAME

3 31.2 4.1 US 28.3 2.5 US UNK! JUN 4 112.4 1.2 US 5 152.6 1.9 US 2 322.1 2.6 US 7 327.1 UNKINGLIN 2.6 US



STOP @ 430.0 SAMPLE LIBRARY 1 JUL 13 1994 14: 6 ANALTSIS # 21 J BYRD, JR. !NTERNAL TEMP 33 DULUTH ANGS 021-023 1.5-2.0

COMPOUND NAME PEAK R.T. OREAZPOM

2 31.3 11.3 US 3 22.3 5.8 US 4 117.4 1.8 US 5 151.5 1.8 US 6 020.1 5.2 US LINKINGHIN UNK JOHN EUKNODY FUKNODY FUKNODY

BENZENE 22.0 100.0 FFD TOLLIENE 2 151.5 100.0 PPB 3 327.1 100.0 PPB E-BENZ, DP-XYL

# START _____ 3 Ħ 5 2

STOP 9 430.0 SAMPLE LIBRARY 1 JUL 13 1994 14:20 22 ANALYSIS # J BYRD, JR. DULUTH ANGS INTERNAL TEMP 33 GAIN 10 AIR BLANK

COMPOUND NAME PEAK R.T. AREAZPPM

2 31,2 7,4 US 3 28,3 38,41 PPB HNKNOUN UNKNOUN 4 112.4 1.7 05

# START

SIDP 0 422.3 SAMPLE LIBRARY 1 JUL 13 1994 14:28 DULUTH ANGS INTERNAL TEMP 33 GAIN 10 100 228

COMPOUND NAME PEAK R.T. AREAFFEM

2 35.4 31.5 US UNENGUN BENZENE FINKNOPN TOLUENE E-BENK, SPHINE 5 327.1 271.3 FFD

***** 3 # ÷ STOP @ 430.8 SAMPLE LIBRARY 1 JUL 13 1934 14:38 אר ,מאדפ ני בסתה הזטטטט ANALYSIS # 24
INTERNAL TEMP 33

12 100 PPB COMPOUND NAME PEAK R.T. AREA/PPM

GAIN

UNKNOUN 2 31.5 3.1 US BENBENE 3 22.1 31.46 PP3 4 112.4 1.6 US UNKROWN TOLUENE S 152.6 30.30 PP3 2 327. ! **221.5** FFS E-BENT, OF-YYL



SAMPLE LIBRARY 1 JUL 13 1994 14:49 ANALYSIS # 25 JETRO, JR. INTERNAL TEMP 33 DULUTH ANGS SAULT SIS # 10 ANALYSIS # 10 INTERNAL TENP 33 021-023 10.5-11

COMPOUND MAME PEAK R.T. AREA/PPM DAKNOUM 2 49.2 198,8 US UNKNOUN 3 35.3 19.3 US 5 149.3 **239.0 FFB** 2 327.1 33,31 259 TOLLENE £-82N%, ಗಿ?-XYL



COMPOUND NAME PEAK R.T. AREAZPPM

2.7 US .7 32.3 BENZENE O desirio 28.3 22.30 PP9 112.4 252.6 mUS 152.6 33.13 PP3 322.1 220.5 FFB DNKNOWN TOLLENE E-BEN8, SP-XYL

CALIDRATED FEAK D. DERZENE

SAMPLE LIBRARY 1 JUL 13 1399 15: 1 SAMPLE LIBNARY 1 JUL 13 131: ANALYSIS # 26 J BYRD, JR. INTERNAL TEMP 34 DULUTH ANGS GAIN 5 100 PPB

COMPOUND NAME PEAK R. T. AREALPPM

BNKNOUN 32.0 2.7 05 3 23.3 100.0 FF9 4 117.4 252.5 MUS 5 152.6 110.1 FF9 6 322.1 325.6 FF9 BENZENS UNKNOUN TOLUENE E-BENY, MP-XYL

# STOP a 430.0 SANPLE LIBRARY 1 JUL 13 1994 15:12

ANALTSIS # 27 BTRD, 1R. INTERNAL TEMP 34 PULLUTH ANGS GAIN S 100 PPB

Rukuaru Rukuaru Rukiaru

COMPOUND NAME FEAK R.T. AREA/PPH

3 31.7 3,1 93 4 78.2 2,2 93 5 112.4 282.7 m95 8 322.5 213.0 mUS



מאטמקחםם 10 # R.T. LINIT

BEN 28.3 100.0 PFP TOL 152.6 100.0 PPB E-BEN, MP-XYL 3 327.1 188 0 PFB

# Ħ 3 α I 6 STOP 9 430.3 SAMPLE LIBRARY 1 JUL 13 1994 15:23 AMALTSIS 3 28 BYRD, JR. INTERNAL TEMP 34 DULUTH ANGS CAIN 5 100 PPB

COMPOUND NAME FERK P.T. AREASPPM

BEN UNKNOUN

# 2 32.8 2.6 US 3 73.3 21.34 PP3 4 112.4 148.2 mUS UNKNOWN a 11 3 12 n 13 SICF a 439 2 STUP 4 420.2 SAMPLE LIBRART 1 JUL 13 1994 15:32 ANALTSIS 2 29 J BYRD, JR. INTERNAL TEMP 34 DULUTH ANGS GAIN 5 021-023 10.5-11 COMPOUND MAME PEAK R.T. AREAZPEN 21.6

UNKNOUN 4.1 05 Пикисши 38.5 3.4 US BEN CAKNONN RAKNONN DAKNONN 3.2 US 3.5 US 2.3 US 76.7 647.0 FFP 37.5 3.2 US 151.5 333.0 FFS 2 3 UNKROUN TOL. E-BEN OP-KIL 12 324.4 136.7 PFS

ארר זם ושבי 15:36

FIELD: 30 POWER: 42 SAMPLE 0.0 Ø. Ø Ø. Ø CAL 0.0 EVENT 3 0.0 0.0 0.0 EVENT 4 0.0 EVENT 5 0.0 0.0 EUENT 6 0.0 0.0 EHENT 8 0.0 0.0

ומכנן פן שטן 1510)

FIELD: 30 POHER: 43

10.0 SAMPLE 0.0 0.0 CAL Ø.ø 100.0 EVENT 3 0.0 EVENT 4 0.0 0.0 EVENT 8 0.0 0.0 0.0 0.0 0.0 0.0



1	9.5	5.3 mi	5
3	31.7	3.5 0	
4	75.3	10.5 U	S
.5	111.9	1.5 U	S
6 2	149.3 311.1	19.0 US 230.5 U	5
	4 5	3 31.2 4 25.3 5 111.9	1 9.5 5.3 mU 9 31.2 3.5 U 4 25.8 10.5 U 5 111.9 1.5 U



# SAMPLE LIBRARY 2 JUL 13 1334 16:15 RNALYSIS 4 35 J BYRD, JR INTERNAL TEMP 34 DULUTH ANGB מתחת פאשפקדפה PEAK R.F. AREAZPEM UNKNOWN 32,9 1.0 05 1 העגעטרע העגעטרק העגע_{טרע} העגעטרע 26.8 2.3 US 111.0 568.5 mUS 152.6 6.3 US 3 5 327.1 17.9 US

בסתףסטתם

BENZENE BEN, RPXTL

DIMENCAR TOULENE ESEN, MAXIL 10 = F.T.

LIDIT

1 135:8 1:600 FFF







11 222. 1 51.10 779





.3

68.6 1.4 US 122:8 1:263 508

LINKNOWN

UNKNOUN

ENKROUM BERACUM



## STAF STOP B 439 9 SAMPLE LIBRARY 2 JUL 13 1934 17:31 ANALYSIS # 41 J BYRO, JR INTERNAL TEMP 35 DULLUTH ANGB GAIN 1 PPH PEAK R.T. AREAZEET באטפקתם 32,0 1.4 US いされどひとさ 1 2 79.0 1.091 FFN 3 110.2 613.3 mUS 4 153.7 976.1 PPB BENE

DUKNOFY

TOLUENS

EBEN, MPXYL

### START -----SAMPLE LIBRARY 2 JUL 13 1994 12:35 J BYRD, JR DULUTH ANGB ANALYSIS # 42 INTERNAL TEMP 34 1 PPM GAIN

5 328.3 2.711 FFM

COMPOUND NAME PEAK R. 1. AREAZOPH



COMPOUND NAME FEAK R.T. AREA/PPM

RMKHORIN

1 92.3 5.9 US 2 111.8 241.8 pUS

### F 18 E 11 n 13 n 19 **1** 15 4'30.0 STOP 0 SAMPLE LIBRARY 2 JUL 13 1994 17:55 J BTRD, JR DULUTH ANG ANALYSIS # 44 INTERNAL TEMP 35 DULUTH ANGE 021-022 14.5-15 GAIN COMPOUND NAME PEAK R.T. AREA/PPM 32.6 904.1 mUS NUKNORU NUKN_{ORIU} 1 32.2 1.2 US 51.9 392.1 mUS RINKNOWN 53.5 535.2 mUS DNKNOUN 69.: 333.3 AUS 73.5 243.: PPS LINK; IOUN BENZ 98.5 824.9 mUS 93.3 654.5 mUS 108.6 635.7 mUS UNKNOWN гикиол. пикиоли 121.7 710.4 mUS UNKNOUN 151.5 11.79 PPB

11

12 175.6 110.5 mUS

15 029.3 11.95 299

TOLUENE

UNKNOUN ESEN, MEKYL





SAMPLE LIBRARY 2 JUL 13 1994 18:16
ANALYSIS # 46 J BYRD, JR
INTERNAL TEMP 35 PULLUTH ANGB
GAIN 2 021-021 14.5-15

COMPOUND NAME PERK R.T. AREA/PPM

UNKNOEN 1 32.3 1.0 US
UNKNOEN 2 27.4 59±19 MES
UNKNOEN 3 52.5 27.3 MUS
UNKNOEN 5 63.5 27.1 MUS
UNKNOEN 5 63.5 27.1 MUS
UNKNOEN 5 63.5 125.1 MUS
EBEN 5ENT 14 322.1 59.56 PPB

# PHOTOVAC



SAMPLE LIBRARY 2 JUL 13 1994 18:27 RALTSIS 4 2 J BYRD, JR RATERNAL IEMP 39 DULUTH ANGB GAIN 2 021-023 14.5-15 CORPOUND MORE PEAK A.T. OREALFROM 1 32,3 244.2 nu3. 2 32.4 233.2 nu3 RMRNOUN 51.5 975-7 mUS PURNOUN \$2.6 324.2 mus UNKNOUN UNKNOLN 5 68.5 289.3 mUS 6 78,3 102,5 228 공위되고 מו יטמאמט 38,3 228,7 mus

CHENCUN

3 (09.4 233.; mUS

# PHOTOVAC



SAMPLE LIBRARY 2 JUL 13 1994 18:33 ANALYSIS 4 98 J BYRD, JR INTERNAL TEMP 34 DULLHH ANGB INTERNAL TEMP 34 DULLHH ANGB

COMPOUND NAME PEAK R.T. AREAZPEM 1 32.4 4.3 US UNKNOUN 2 29.5 12.9 03 UNKNOWN 55.5 20.3 VS ENKNOUN 3 UNKNOUN 62.2 6.2 US 32.4 6.104 FFF 5 BENZ FMKVGFM 9 125:3 908:9 208 8 151.5 148.4 723 TOLUENE 8 125.5 003.4 901 CNEWSON ENKNOWN 13 219.1 39.9 800 11 266.2 121.3 900 Insentant. EBEN, MAJORL 12 905.5 400.3 PMB 13 302.3 020.4 279 EBEN: OP.OU.

# PHOTOUAC



COMPOUND NAME FEAK R. F. AREAKPED

# PHOTOVAC

CALIPRATED FEAR 2, PERS

SAMPLE LIBRARY 2 JUL 13 1994 18:53 ANALYSIS 4 49 J BYRD, JR INTERNAL IEMP 34 PULLITH ANGB GAIN 2 1 PPM

בסענים האיניב	PEAK	к.т.	AREAMERA
MENS RNKNOMN			1.2 US 1.000 FFF
IDFRENE NUKUDHU			238.4 pps 238.4 pps
EBEN, MPXYL	5	322.4	מודן ככף.ג

# PHOTOVAC



STOP \$ 490.0 SAMPLE LIBRARY 2 JUL 13 1994 19: 4 AMALYSIS = 50 J BYRD, JR INTERNAL TEMP 34 DULUTH ANGB GAIN 2 1 PPM

COMPOUND NAME	5.5%	к. т.	AKEA.	7,550
UNKNÖUN	1	32,0	1.2	U.I
UNKROUN	2	72.3	5.5	US
UNKNOUM	.3	111.3	294.5	nU (
UNENDER	Ģ	152.3	4.2	41
UNENDIAN		222.1	:3. ₹	·



2 COMPOUND ID # K.T. LIMIT

BENZ	1	22.3	1.000	FFF
ICLUENE	2	152.5	1.000	PPH
EBENZ UPXIL	3	327.1	1.000	PPN





38300 SBENZ MPXYL

14 923.3 132.9 225





# PHOTOVAL

IUL 19 1334 \$:48

FIELD: 29 POWER :

SAMPLE CAL EVENT 3 EVENT 4 EVENT 5 10.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 EVENT 6 9.0 **a**. a EUENT 2 0.0 9.0 0.0

START_____

SICE 3 128.0
SAMPLE LIBRARY 1 JUL 19 1994 9:
ANALYSIS 4 3 J BYRD, JR.
INTERNAL TEMP 23 PULLUTH ANGS 10 100 558

COMPOUND NAME PEAK P. T. SPENYPPH

UNKNOWN ANE A 2 26.1 11.1 95

186.3 1:7 3

a 3 STOF 4 428.3

SAMPLE LIBRARY 1 JUL 14 1994 9:21 אר , פאץם נ ANALYSIS # INTERNAL TEMP 23 DULUTH ANGS COMPOUND NAME

PERS R. T. BREING TH ອຊເສ ຊຸມ ພຽ ຂະເສັດສະໜຸລ _ເພະ чэкисий 44.400 N

3 158.1 892.2 3 016.1 713.1 WU والطاق فالمطوالية g gan. s 2,3 wg

COMPOLINA LIDIT

BENZENE

81.3 100.0 PPB

DLUENE

2 156.5 100.0 FFB

E-BENZENE

316.1 100.0 PPB

MP-ATLENE

1 333.5 180.0 PPB



STOP W 400.0 SAMPLE LIBRARY 1 JUL 14 1994 9:33 ANALTSIS # S J BYRD, JR.
INTERNAL TEMP 23 DULUTH ANGS
AIR

COMPOUND MADE PERK D. . AREDAPOR 1 010 ... 05

4 2 STOP 4 130.2

SAMPLE LIBRARY 1 JUL 14 1994 9:43 ANALYSIS # 6 J BYRD, JR. INTERNAL TEMP 30 DULUTH ANGS GAIN 5 021-029 2.0-2.5

CONTOUND HOME FERK S.T. OREGINSON

2 02.5 8.2 95

# 3 STOP 0 420,3

SAPPLE LIBRARY 1 JUL 14 1994 9:53 PRINTERNAS TEMP 38 BUEUTH ANGS

GAIN 5 021-021 2.0-2.5

COMPOUND NAME PERK R.T. GREAVERS 2 32,4 3,5 03 Liskington



SAPPLE LIBRARY 1 JUL 14 1994 10: 3 AMALYSIS # # J BYRD, JR. INTERNAL TEMP 30 **PULLITH ANGS** GAIN 5 021-020 10.5-11#

תפתומטות אמרנ וובתא מ.ו. מתבתוקף 2 00,4 00 03 UNANDER

4 4

TTOP & 490.0 SAMPLE LIBRARY 1 JUL 14 1994 10:14 ANALYSIS # 9 J ØYRD, JR. DULUTH ANGS INTERNAL TEMP 30 GATN 5 921-921 6.5-7.9

בסחדים וופרב רברא ה.ד. ההבהצרים

THERETAIN. 0 00.5 0.6 03



UNKNOUN

BENRENE

FOLUERS

E-BENEENE

 $\mathbb{R}^{n_{2}n_{1}}\cdot \mathbb{R}^{n_{2}}=\mathbb{R}^{n_{2}}$ 

2 22,1 2,7 93



0 30,3 62 81 878

6 133.1 33.31 752

2 312. 5 33. 37 373

3 00013 40072 33

# PHOTOVAC

CALIPRATED FEAK 3. DENZENE

SAMPLE LIGRARY 1 JUL 14 1994 10:34 ANALTSIS INTERNAL TEMP 31 DULUTH ANGS GAIN 5 100 PPP



Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Security of Securi

. Photovaci

ID # F.T.

LIDIT

0 00,0 3 2 44 0 70,0 40,4 849 0 ,00,7 904,3 84 4 544 007 ( 89)

כמקדמנואם

STOP 4 130.0

STOP 4 130.0

SAPPLE LIBRARY 1 JUL 19 1334 11:39
ANALYSIS # 1 JERD, JR.
INTERNAL TEMP 32 DULLUTH ANGS
SAIN 5 AIR

COMPOSIND HAME FERK R.I. ASEANYST

2 32,3 0,6 08

Charge top













# PHOTOUAC

CALIBRATED FERK D. SENSENE

SAMPLE LIBRARY 1 JUL 14 1324 17:32 ANALYSIS 4 13 BYSG. JR. INTERNAL TEMP 33 DULLIN ANGS GAIN 5 120 PPBP



BARRETEIE BRARTZO JULBTSD1038, 12:50 "HTERNAL TERE 33 DULUTH ANDS

S AIR as makes paragraphic signs of the regarder

g (12.5 (2.5 b) 100000



SAMPLE LIBRARY 1 JUL 14 1934 10:05 ANALYSIS 4 21 J BYRD, JR. INTERNAL TEMP 48 DULUTH ANGS

5 021-018 2,0-2,5 COMPCURE HAME FERK F.F. AREASETT 1 01.5 g / 95



stor a larb.e SAMPLE LIBRARY 1 UUL 11 1939 13:58 ANALYSIS # 23 J BYRD, JR.
INTERNAL TEMP 34 DULUTH ANGS

5 921-019 3.5-10.0 GAIN

CONTROLL METER SERVICES OF EACH FOR LANGUAGE SERVICES OF TOUR SERVICES OF THE SERVICES OF T

TO 1 490.0 SAMPLE LIBRARY 1 JUL 19 1009 19:01 ANALYSIS 4 26 J BYRD, JR, INTERNAL TEMP 34 DULUTH ANGS DAIN 5 100 PPB

COMPOUND NAME OF ACT OF ACCOUNTS 1758. a 11. a \$2.000,00 1 143.4 185.1 FFP 4.



SARCUS _ 168AR\$ 1 JUL 14 1994 14:10 7 24 J BYRD, JR.

INTERNAL TEMP 24 OULUTH ANGS OAIN 5 021-013 14.5-15

CONTRACTOR OF THE PROPERTY OF

25.00 HERMENE.

CALIBRATED FEAK D. BENZENE

SAMPLE LIBRARY 1 JUL 19 1334 14:36 ANALYSIS # 26 J 8780, JR.

100 PFB

INTERNAL TEMP 34 DULUTH ANGS 5

GAIN

annonem printe i prink i puri, i regio i e 9 99.2 2 4 2018 874 Panagang. פשק פ, פפן יוי ner bassa 6 1000 to the gray 14 EASE. 2 Part of the ין ושפים גרם . .



MARRIE LIBRARY 1 JUL 14 1239 12:45 ANALYSIS # 22 J BYED, R.

spinrouka khoy ingak jayay ingakashi er ers de jaja e and the same



SAMPLE LIBRARY : JUL 19 1339 14:28 ANALYSIS # 25 1 BYSD, 18. INTERNAL TERE OF SUBBOTSANGS-2.4

MARSON AND CARE A. HEART 1 18th C 11



SAPPLE LIBRARY | JUL 14 1534 14142 AMALYSIS 22 J BYRD, JR. INTERNAL TEMP 35 DULUTH ANGS SAIN 5 AIR

when the peak the amproprie a tawa sati d towns to an

# 3 7 1100 1 100.0 SARPLE LI^{BRART} 1 BUL 14 1884 14:52

ANALYSIS = 28 J BYRD, JR.

INTERNAL TEMP 35 DULUTH ANGS

GAIN 5 021-016 2,0-2,5

THE TIME HERE DESK BUT, OFFICERED tue to lite is standard by

# 27.34 . z. 1 . . **#** 2 ± 3 .7 + 80.3

T.D. 103.7 SAMPLE LIBRARY 1 JUL 14 1004 15: 3 ANALYSIS 4 20 J BYRD, JR. INTERNAL TEMP 05 DULUTH ANGS GAIN 5 021-016 6.5-2.0

REPORTE HOUSE TRANSPORTS OF THE PROPERTY

1 70.8 N. 8.8 NA



SAMPLE LIBRARY 1 JUL 14 1834 15:20 ANALYSIS # 30 J BYRD, JR.

*NTERNAL TEMP 35 | DULUTH ANGS 04[N | S | 02]-016 [3,5-1] G4 [N Windles Here Jean Sir. Heerich

2 (2) 3,0 90



1-27 V 493.1 SAMPLE LIBRART 1 JUL 14 1334 15:30 ANALYSIS 4 31 J BYRD, JR. INTERNAL TEMP 35 DULUTH ANGS GAIN 5 021-013 6.3-2.0

COTTOUR HOUSE CEAK D.T. GREAKEET 4,750.00



SAPPLE LIBRARY 1 JUL 14 1894 15:40 ANALYSIS = 32 J BYRD, JR. INTERNAL TEMP 35 DULUTH ANGS 5 02:-0:3 10.5-11 GAIN

<mark>gampa</mark>ansa oong oolaashoosis, oo keesto m in the Augusta was part of the ore  $\operatorname{Lifter}_{\mathbb{R}^n} \mathbb{E}_{\mathbb{R}^n}$ 



SAMPLE LIBRARY ! JUL 14 1004 15:50 ANALYSIS 4 33 J BYRD, 18.
INTERNAL TEMP 35 DULUTH ANGS
GAIN 5 100 PPB

במשנו מאטמים משניב 78.38 8.1 3x23.1. 3

22 2  $\beta \in \mathbb{N} \land \xi \in \mathcal{A}_{\xi}$ .. * 127.5 FFF 5... 2742 . . 105.7 PPB والإرساقي والاحتاج ar estilaci

: 7 1 1 164.1 FFF

### CALIBRATED PERK 3, BENTENE

SAMPLE LIBRARY 1 JUL 14 1394 15:54 ANALYSIS # 33 J BYRD, JR.
INTERNAL TEMP 35 DULUTH ANGS
GAIN 5 100 PPB

CONTINUE DAME DEPK DIT. GREAKING 0 01.1 1... 0... 0 100.0 FF9 70 (TE) (2 - 10.432 42 38 35, 54 2 741 1 128'e LLB 10-47-03-46





SAMPLE LIBRARY : JUL 1801338 16: 6 ANALYSIS # 34 JETRO INTERNAL TEMP 35 DULUTH ANOS GAIN 5 100 PPB

J. 1913. NO. 1912. 15 July 1984 FIRM X KM C. A214 F4 3* Sec. 25.44 . . . . . . . . . .

COMPOUND 10 # 6.T. LIBIT

SENZENE

81.5 100.0 PFP

TOLUENE

2 158.7 100.0 FFB

E-BENZENE

GAIN

3 319,2 100,0 PFB

UL-ALTENE

1 311.6 100.0 PPB

.. # 1 # 7 SAMPLE LIBRARY 1 JUL 14 1934 16:13
ANALYSIS # 35 J BYRD, 18.
INTERNAL TEMP 35 DULUTH ANGS

an base some light of the the state of the state

S MARKE ALA B

**z** 1 <del>1</del> 4 3125 · vie.e SAMPLE LIBRARY 1 JUL 18 1804 12: 9
ANALYSIS 4 36 J BYEC, 18.
INTERNAL TEMP 34 DULLIN ANDS
GAIN 5 021-315 1.5-2.0

12 (*1140 - 47 g. ) (23k ) (1.1. Super 1.1. Secretarian and the second second

stan y gabja

SAMPLE LIBRARY : JUL 14 1994 12:19
ANALYCIS = 32 J BYRD, IR.
INTERNAL FEMP 34 DULUTH ANGS
GAIN 5 921-015 6.5-2.0

Constitution from the property of the constitution of the constitu

57.5 д. ј. .

SATPLE LIBRARY: JUL 14 1934 12:23
ANALYSIS # 38 J BYRD, JR.
INTERNAL TETP 34 DULUTH ANGS
GAIN 5 021-015 10.5-11

COMPOSITE SECRETARIO NATIONALES Sugar, Salar A 40.4 0.

**a**. 1 **4** 4 apro de cipação mais a como

SAMPLE LIBRARY 1 JUL 14 1934 12:42 ANALYSIS 4 39 J BYRO, JR INTERNAL TEMP C4 DULUTH ANDS 5 @21-015 10-10,5 GATH

and the second second 4-14-15-4

3 7.3- 1 653.3 SAMPLE MISRARY 1 JUL 14 1994 12:51 ANALYSIS # 40 J BYRD, JR.

INTERNAL TEMP 34 - PULLITH ANGS 5 100 PFB

named with the control of the control

1 12.0 2. 3. 5 3 3 3 4 3 3 17 3 34.386.46 214 15.095 F. וסס. ס ררם 1 42140

TALIBRATED FEAK 3, DENTENE

SAMPLE LIBRARY : JUL 19 1334 17:52
ANALTSIS 4 40 J BYRO, JR.
INTERNAL TEMP 32 DULUTH ANGS
GAIN 5 100 PFB

Contact water the Million Contact and

15.00 100.0 176 81-180-12-45 :. 156,7 FFP



วบลาลี ต่าลเล่ SAMPLE LIBRARY: JUL 14 1894 18: 4
MARLYSIS # 41 J BYRD, JR. .
INTERNAL TEMP 33 CULLUTH ANDS
GAIN 5 AIR

talender (1975) and the state of the state o

JUL 15 1339 3:23

FIELD: 30 POWER: 44

SAMPLE 8.0 10.0 0.0 0.0 a. a CAL EVENT 3 100.0 EVENT 4 0.0 EVENT 5 Ø.0 Ø.0 9.9 ø. ø EUENT 6 EVENT 2 0.0 EVENT 8 0.0 0.0

ma at. LINIT כמתרסטמס

BENZENE 88.1 100.0 PFD 2 155.3 100.0 PPB 3 311.6 100.0 PPB TOLUENE ETHATBENSENE 4 334.4 100.0 PFB P-XYLENE

STAP! 57.7P 1 47.8.2

SAMPLE LIBRARY 1 JUL 15 1994 9:33 JUL 15 1554 J BYRD, JR. PULUTH ANGS ANALTSIS # INTERNAL TEMP 29 5 100 PPB

AEAR 13.71 AREAR AND dannound pinner

22. - 9 1 0. 10 1 1 186.9 FFB 1.00 144 × 250 × 12000 221.0 LLB ndunele Entretee Entre Eise

# 1 3

SAMPLE LIBRARY 1 JUL 15 1934 3:59 J BYRD, JR. ANALYSIS # 3 INTERNAL TEMP 30 DULUTH ANGS GAIN 5 AIR

Compute thank of the order tigans, for

\$126 T.L. 1 3 1702 4 (200.0 SAMPLE LIBRARY 1 JUL 15 1994 18:35 SMIRE CIBINAL 1
ANALYSIS = 4 J BYRD, JR.
INTERNAL TEMP 31 DULLTH ANGS
GAIN 5 021-01\$ 2.0-2.5

7 ಮ್ಯೂಯ್ನಾರಿ ನೀಡು ಗರ್ವಿಸ.

1.35,424.4

Space and 132.1

s

SAMPLE LIBRARY 1 JUL 15 1994 9:95 ANALYSIS # 2 J BYRD, JR. INTERNAL TEMP 30 DULUTH ANGS

100 PPB

5550 \$ 3700.0

GAIN

. . . . 

1 3

SAMPLE LIBRARY 1 JUL 15 1334 10:45 ANNLYSIS # 5 J BYRD, JR, INTERNAL TEMP 21 DULUTH ANGS GAIN 5 021-012 5.5-6.0

to the ensurement of the second 4 800 0.50

-- 227 u i # 7

3 2 3 1 10.0 SAMPLE LIBRARY 1 JUL 15 1234 10:56 ANALYSIS # 6 J BYRD, JR.
INTERNAL TEMP 01 CULLITH ANGS
GAIN 5 021-012 10.5-11

CONTROL OF TEAM

u 3. ¥ 3 argerall Broke

SAMPLE LIBRARY 1 UUL 15 1994 11: 2 ANALYSIS # 2 4 8YRD; UR. DULUTH ANGS INTERNAL TEMP 32 021-017 14.5-15 5

العترف فلأشف بالثنا . dim

. 9/4 ...



SAMPLE LIBRARY 1 JUL 15 1394 11:31 ANALYSIS # 0 J BYRD, JR.
INTERNAL TEMP 32 DULUTH ANGS GAIN 5 100 PPB

# PHOTOVAC

CALIBRATED FEAK 2, BENTENE

SAMPLE LIBRARY 1 JUL 15 1321 11:32
ANALYSIS # 8 J BYRD, JR.
INTERNAL TEMP 32 DULUTH ANGS
GAIN 5 100 PPB



SAMPLE LIBRARY 1 JUL 15 1934 11:42
ANALTSIS # 9 J BYRD, JR.
INTERNAL TEMP 32 DULUTH ANGS
GAIN 5 AIR

Monathur maint and monathur will be a second of the second

PHOTOUAC



SIRE 4 100.00
SARRLE LIBRARY 1 JUL 15 1324 12:47
ANALYSIS 1 J BYRD, JR.
INTERNAL TEMP 33 DULUTH ANDS
GAIN 5 021-026mu 2-2.5

-constraint value of  $x_{2}, x_{3}, \dots, x_{n-2}$  , where  $x_{1}, \dots, x_{n-2}$ 

SAPPLE LIBRARY 1 JUL 15 1334 12:57
ANALYSIS 4 11 J 8780, JR,
INTERNAL TENP 33 DULUTH ANGS
GAIN 5 021-026nH 8.5-3

Committee wing the second of t

PHOTOUAC

SATIPLE LIBRARY 1 JUL 15 1034 13: 2 ANALYSIS 4 12 JURED, JR. INTERNAL TETAP 34 DULLTH ANGS GAIN 921-0260H11-11.5

into get can be seen in the company of the second

PHOTOUAC

THER R 102.3

SAMPLE LIBRARY 1 JUL 15 1994 19916
ANALYSIS # 13 J BYRD, JR.

INTERNAL TEMP 34 DULUTH ANGS
GAIN S #21-#26mu16.5-12

Complete Section (1)

SAMPLE LIBRARY : JUL 15 1004 10:26 ANALYSIS # 14 J BYRD, JR. INTERNAL TEMP 34 DULUTH ANGS GAIN 5 100 PPB

10 Phys 1964 (1988) 1917 (1919)

***

## CALIBRATED FEAK 3, BENZENE

SAMPLE LIBRARY 1 JUL 15 1339 13:28
ANALYSIS # 19 J BYRD, JR.
INTERNAL TEMP 39 DULUTH ANGS
GAIN 5 100 PPB

COMPOUND NAME PEAK R.T. AREANPAM



COMPONIARS MARIE (COERM CO.C.) RESERVACES

MARKET TO THE REPORT OF

FIELD: 30 POHER: 44

SAMPLE	8.8	10.0
CAL	2.2	0.0
EUENT 3	2.2	100.0
EVENT 4	0.0	0.0
EVENT 5	0.0	0.0
EVENT 6	0.9	2.2
EUENT 2	0.0	9.0
EVENT 8	0.0	0.0

COPPOUND 10 =

77.7 100.0 PFB BENZENE TOLUENE STATEME 150.3 100.0 FFB 300.5 190.0 FFB 105.4 190.0 FFB



SAMPLE LIBRART | JUL 18 1994 11: 2
SAMPLE LIBRART | JUL 18 1994 11: 2
AMALYSIS # 3 J BYRD, JR.
INTERNAL TEMP 35 DULUTH ANGS
GAIN 10 AIR

CORPORNO NAME FERN R.T. AREALTY

2 21 2 4.5 3 TINKINGIATA

## HOTOVA



SAMPLE LIBRARY 1 JUL 18 1994 10:99 ANALYSIS # 1 J BYRD, JR. ANALYSIS # 1 BYRD, JR.
INTERNAL TEMP 34 DULUTH ANGS
GAIN 2 100 PPB

COMPOUND MARE RESK & T. AREA/TER

2 27.8 60 10 899 2 27.8 60 10 899 3 199.0 44.30 609 5 199.0 199.0 899 6 900.1 293.3 FFD 2 389.1 281 9 1990 i sare in SENBENE TOUTONE ETHT LEENSLINE ETHT LEENSLINE UNKIRRA



INTERNAL TEMP 35 GULLUTH ANGS

CONFOUNDINGS (FERM A.T. ) WELLS ST 5 95.5 41 7 50



STOP & 670.3 SAMPLE LIBRARY 1 JUL 18 1994 10:53 ANALYSIS 2 2 J BYRD, JR. INTERNAL TEMP 34 DULUTH ANGS GAIN 10 PPB

COLECAND WHAT	1, 48.	7 1	-6. ₹ #V	
Section 1	٠.	·	3.4	73
(mwegran		100	9.2	12.5
i aktightats		1.0.3	1.11	
115 44		2.2		• 7.
19819, 544	5	17917	5,4	



STOP 8 430.3
SAMPLE LIBRARY 1 JUL 18 1334 11:99
ANALYSIS # 5 J BYRD, JR.
INTERNAL TEMP 35 DULUTH ANGS
GAIN 10 012-0168H 1-5-2

COMPOUND MARE RESK B.T. OREARPH

2 31.1 5.6 45 MAKNOWA



SAMPLE LIBRARY 1 JUL 18 1994 11:54 ANALYSIS # 6 J BYRR, JR.
INTERNAL TEMP 35 DULUTH ANGS
GAIN 10 012-0168H 5.5-6

COMPOSING MAINE TERM R. F. MESS. COM



\$100 9 900.0 SAMPLE LIBRARY 1 JUL 18 1994 12:12 ANALYSIS # 2 J BTRO, JR.
INTERNAL TEMP 35 DULUTH ANGS
GAIN 10 017-0100H 3.5-10 ANALYSIS # GAIN

COMPOUND WARE FEAK A.C. BREAFORM e silt als W



## CALIBRATED FEAR 3, BENZENE

SAMPLE LIBRAR' ANALYSIS # INTERNAL TEMP GAIN	10 J 35 O	L 18 13 BYRD, ULUIN A 00 PFB	JR.	2:58
ברות כמשפקקט	UTak	8. 1.	4:20	.771
19864049	•:	50.3	3 /	52
7.5107£14£	-7	77.9	100.0	rrp
NUMBER	r.	152.3	25.5	11.3
医下颌 经基础产品 经	:	1933.3	# 3 PM	
$1.0772~\rm EMG~\rm eV$		77.0	212.0	LLb











: "A RENELL L

1 000.3 ZID'S LLb







SAMPLE LIBRARY 1 JUL 18 1994 14:52 ANALTSIS 1 15 J BTRD, JR.
INTERNAL TEMP 34 DULUTH ANGS
GAIN 10 012-0138H 5.5-6

COMPOUND PAPE PERK R. T. ARENAMAN

A 21.2 4.3 00 5 80.7 8.8 . 1 BENEZIONE

# ^{्ट}.≇ z 4 4 970F 2 420.3 SAMPLE LIBRARY 1 JUL 18 1994 15:21 ANALYSIS # 16 J BYRD, JR. INTERNAL TEMP 34 DULUTH ANGS GAIN 10 012-0138H 2-2.5

the Control of

GAIN

35 45

व्यक्तिक स्थापन स्थ



SAMPLE LIBRARY 1 JUL 18 1994 15:05 ANALYSIS # 17 J BYRD, JR. INTERNAL TEMP 34 DULUTH ANGS GAIN 10 @12-@138m 2.5-1@



SAMPLE LIBRARY 1 JUL 18 1934 15:44
ANALYSIS # 18 J BYRD, JR.
INTERNAL TEMP 34
GAIN 10 017-0138H 3.5-10

Charles may be a more 1.58,555.4 to the second

START ALLES STEF 9 100.0

STOP R 100.0 SAMPLE LIBRART 1 JUL 18 1339 15:53 ANALYSIS # 13 J BYRD, JR. INTERNAL TEMP 39 DULUTH ANGS GRIN 10 100 PPB

CONTROL MARE TEAK R. C. MREMARTH 5 0311 0311 03 6 0311 03113 03 7 30113 61 31 03 8 101 1 106.1 [FP 03899 / ₁₈ TE TO STE ESHAFIAS ES

CULIBRATED LENK 3'BENSENE

SAMPLE LIBRARY 1 JUL 18 1994 15:54
AMALYSIS # 19 J BYRD, JR.
INTERNAL TEMP 34 DULLTH ANGS
GAIN 10 180 PPB

TO FUTE MADE OF DEAK (B. T.) AREA KET A Section (Section (Sec 100.0 FFP



SAMPLE LIBRARY 1 JUL 18 1994 16: 6
ANALYSIS # 20 J BYRD, JR.
INTERNAL TEMP 35 DULUTH ANGS
GAIN 10 AIR

entropy with the second second Dettains.



JUL 13 1331 2:25

FIELD: 30 POWER: 42

SAMPLE 8.0 0.0 10.0 0.0 EVENT 3 0.0 100.0 EVENT 4 9.0 a a EVENT 5 0.0 EVENT 6 0.0 0.0 EVENT 2 0.0 9.0

JUL 13 1339

FIELD: 30 POWER: 43

SAMPLE 10.0 CAL 0.0 0.0 EUENT 3 0.0 130.0 EVENT 4 0.0 0.0 EVENT 5 a.a a a EVENT 6 0.0 0.0 FUFNT 2 0.2 0,0 EVENT 8 2.0 0.0





See Court u Kritar Line Lun

CONTROL OF THERE IS NOT BEEN THE ageging spirit 31 5 F 30 0 min 11 23 F 3 min = 1 11 10 2 2 22 7 2 min 1 10 2 2 22 7 2 min 1 10 2 2 2 1 1 min



SAMPLE LIBRARY 1 JUL 13 1334 9:38 ANALYSIS # 3 J BYRD, JR. INTERNAL TEMP 33 DULUTH ANGS 

## COMPOUND -ID # F.T. LIDIT

BENZENE TOLUENE E-BENSENE FF-XYLENE

28.5 100.0 PFB 2 156.3 100.0 PFS 3 397.1 188.8 PPB 1 323.6 188.8 PPB



 $\boldsymbol{z} \to \boldsymbol{I}$ 

SAMPLE LIBRARY 1 JUL 13 1934 10: 3 ANALYSIS 2 5 JETRD, JR. INTERNAL TEMP 33 DULUTH ANGS GAIN 10 017-0148H 2-2.5

วุธิศภิกษาย์ พละกรี เกรละ พ.ศ. พ. พ. ละคละพริก

No so de Sonta de



SAMPLE LIBRARY 1 JUL 19 1934 10:14 ANALYSIS # ANALYSIS # 6 J BYRD, JR.
INTERNAL TEMP 34 DULUTH ANGS
GAIN 10 012-0148H 4.5-5

Cusposido sergo (grado profito especie 7 - 4 a - 9 1 - 3 2 - 36 7 - 11 - 41

July 18 18





SAMPLE LIBRARY 1 JUL 19 1994 10:52
ANALTSIS # 3 J BYRD, JR.
INTERNAL TEMP 34 DILLUTH ANGS
GAIN 10 017-0128H 2-2.5

Constant pent (Mass (1.5) Seath of 

21 L 41



SAMPLE LIBRART 1 JUL 19 1994 11: 2 ANALYSIS # 9 J BYRD, JR.
INTERNAL TEMP 34 DULUTH ANGS
GAIN 10 817-8128H 5.5-6

1,2,35

1. 4.2. - . V. Sergio de en vince y Handizan da ita

# # 4 ₆

270F 9 43P.V SAMPLE LIBRARY 1 JUL 13 1334 11:13
ANALTSIS # 10 J BYRD, JR.
INTERNAL TEMP 34 DULUTH ANGS
GAIN 10 PPB

THE ST PENDY

% 00.2 0.2 05 2 08 6 0.06 09 6 200.1 0.00 16 1 00.1 112.9 FFP 3 133. 35 35 SPECIOL A BENTERS FOLLER TO SERVE TO SER the store

Company of the same

CALIBRATED FERK 3, BENTENE

SAMPLE LIBRARY 1 JUL 13 1334 11:14
ANALYSIS # 10 J BYRD, JR.
INTERNAL TEMP 34 DULUTH ANGS
GAIN 10 100 PPB

патропия ката — ја и. ј. т.  $\mathcal{A}_{i}^{k} = \mathcal{A}_{i}^{k} \subseteq \mathcal{A}_{i}^{k}$ and the first 100.0 550

190.6 FFP

כפררפטויף ID # R.T. Linit

BENSENE 1 28.5 100.0 FFD TOLUENE 2 156.1 188.8 PFB 3 307.0 100.0 PFD 1 323.2 100.0 PFB E-BENZENE PP-XTLENE D-XYLENE 5 385.3 100.0 PPB

Story of Lagran SAMPLE LIBRART | JUL 13 1994 | 11:26 ANALYSIS # 11 J BYRD, JR, INTERNAL TEMP 34 DULUTH ANGS GAIN 10 AIR Tilber Diff. His will are in 1.06% CU. 8 1/4/9

ing ing a line of the state of State South Table 1

START.... п

SAMPLE LIBRARY 1 JUL 19 1994 11:40 ANALYSIS # 12 J BYRD, JR.
INTERNAL TEMP 35 DULUTH ANGS
GAIN 10 012-0128H 9.5-10

CONTRACT OF RE المحادية والمتحال

. . .



SAMPLE LIBRARY 1 JUL 13 1994 11:50 ANALYSIS 4 13 J BYRD, JR.
INTERNAL TEMP 35 QULUTH ANGS
GAIN 10 017-0110H 2-2.5

 $\underline{\mathcal{D}}^{(k,k)}(\alpha_{\omega}^{(k)}(z_{\omega}), z_{\omega}^{(k)}(z_{\omega}), z_{\omega}^{(k)}(z_{\omega}) = 0$ DRESS 2 25.5



SAMPLE LIBRARY 1 JUL 12 1234 12: 1
ANALYSIS 4 14 J BYRD, JR.
INTERNAL TEMP 35
GAIN 100 DILLUTH ANGS
GAIN 100 917-0118H 5.5-6

PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART OF THE PART O

s . ; .....

ž 3

# PHOTOVAC

CALIPRATED PEAK 3, DENZERE

SAMPLE LIBRARY 1 JUL 19 1994 12:53 ANALYSIS # 16 J BYRO, JR. INTERNAL TEMP 35 DILUTH ANGS GAIN 10 100 PPB



SAMPLE LIBRARY 1
ANALYSIS # 18
INTERNAL TEMP 36
GAIN 10
AUL 19 1994 13:18
DULUTH ANGS
GAIN 10
AIR

4 2 2 2 2 2 2

2360 20



STOP & 450.0 SAMPLE LIBRART 1 JUL 19 1994 13: 4 ANALYSIS # 12 JETRO, JR, INTERNAL TEMP 35 DULUTH ANGS GAIN 10 100 PPB PHOTOUAC

SAFPLE LIBRART 1 JUL 19 1994 13:53
ANALYSIS # 19 J BYRD, JR.
INTERNAL TEMP 96 DULLTH ANGS
GAIN 10 017-010BH 4.5-5

Letter State (1985)

PHOTOVAC

SAMPLE LIBRART 1 JUL 19 1994 12:10 ANALTSIS # 15 J BTRD, JR. INTERNAL TEMP 35 DULUTH ANGS GAIN 10 M27-0118H 9.5-10

 $G_{\mathbf{k}}(\mathbf{p},\mathbf{m},\mathbf{s}_{\mathbf{k}}), g_{\mathbf{k}}(\mathbf{s}_{\mathbf{k}}) = \mathbb{E}_{\mathbf{k}}(\mathbf{s}_{\mathbf{k}}) = \mathbb{E}_{\mathbf{k}}(\mathbf{s}_{\mathbf{k}},\mathbf{s}_{\mathbf{k}})$ 

5,8 4(5.17)

5 9.00 30.0



SAMPLE LIBRARY 1 AUL 19 1994 12:51 ANALYSIS 4 16 J BYRD, JR. INTERNAL TEMP 35 DULUTH ANGS GAIN 10 100 PPB

PHOTOUAC COPPOUND SO A R.T. CIRIT

BENTENS 1 70.6 100.0 FTB
TOLUENS 2 157.3 100.0 FTB
E-DENTENS 3 311.0 100.0 FTB
NF-XTLENS 1 333,0 100.0 FTB

PHOTOUAC

SAMPLE LIBRARY 1 JUL 13 1334 14:53
ANALYSIS # 20 J BYRD, JR.
INTERNAL TEMP 32 DULUTH ANGS
GAIN 10 617-0100H 3.5-10

يراجيه جيعوا خا

the the state of

DAME IN

115.2 FFB 189.2 FFB 189.3 FFB 189.4 FFB

π 1 . 1 1777 0 153.3 SAMPLE LIBRARY 1 JUL 19 1994 15: 9
ANALYSIS # 21 J BYRD, JR,
INTERNAL TEMP 3> DULUTH ANGS
GAIN 10 012-0128H 1.5-2

Contracting of the state of the second Services distribution of the services

FORT... * i # 4 SAMPLE LIBRART 1 JUL 19 1994 15:18
ANALYSIS # 27 J BYRD, JR.
INTERNAL TEMP 37 DULUTH ANGS
GAIN 18 017-0120H 5.5-6

Salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the salar and the sa

57,087

STOP 3 404 SATIPLE LIBRART 1 JUL 13 1994 15:40 ANALYSIS 4 23 J BYRD, JR. INTERNAL TETP 32 DULUTH ANGS GAIN 10 017-0178H 9.5-10 ಪಾಳ್ಯಾ ಕಾಸ್ತ್ರೀ

1490, 6 124

START a j # 2

SAMPLE LIBRART 1 JUL 13 1334 16: 3
ANALYSIS # 25 J BYRD, JR,
INTERNAL TEMP 32 DULUTH ANGS
GAIN 18 AIR

And the treatment of the control and agree

12.14

START ₽

SAMPLE LIBRARY 1 JUL 19 1994 15:54 ANALYSIS # 29 J BYRD, JR. INTERNAL TEMP 32 DULUTH ANGS GAIN 10 100 PPB Carlanda a seri

127.2 FFB

п 4

SAMPLE LIBRARY 1 JUL 13 1934 16:18
ANALYSIS 3 26 J BYRD, JR.
INTERNAL TEMP 32 DULUTH ANGS
DULUTH ANGS
AND 180 PPB

113.2 FFB 115.0 FFB

130.3 FFF

CALIBRATED FEAK 3. DENTENE

SAMPLE LIBRART 1 JUL 19 1994 15:58
ANALYSIS 4 24 J BYRD, JR.
INTERNAL TEMP 3> DULUTH ANGS
GAIN 10 100 PPB

CULIDRATED LEUK 4'DEUSENE

SAMPLE LIBRARY 1 JUL 12 1234 16:13
ANALYSIS 4 26 J BYRD, JR.
INTERNAL TEMP 33 DULUTH ANGS
GAIN 10 100 PPB

199.9 CFD 101.5 775

. 165,5 FFF

100.0 770 109.6 FFB

# PHOTOUAC

JUL 20 1009 10:00

FIELD: 30 POWER: 43

SAMPLE	8.0	10.0
CAL	0.0	0.0
EVENT 3	0.0	130.0
EVENT 4	9.0	0.0
EVENT 5	0.0	0.0
EUENT 6	2.0	0.0
EVENT 2	2.0	9.9
EUENT 8	0.0	9.0



SAMPLE LIBRARY 1 JUL 20 1934 11: 3
ANALYSIS # 1 J BYRD, JR,
INTERNAL IEMP 23 DULTH ANGS
GAIN 10 PPB

addie wie erweit in der Scholle Wert in der

# PHOTOUAC

נים במחקסטותים ום בי ג.ד. בותו

 BENZENE
 1
 93.2
 100.0
 PFB

 TOLUMENE
 2
 163.3
 100.0
 PFB

 E-BENZENE
 3
 320.3
 100.0
 PFB

 Tr-XTLENE
 4
 313.1
 100.0
 PFB

PHOTOVAC

SAMPLE LIBRARY 1 JUL 20 1994 11:21 ANALYSIS # 2 J BYRD, JR. INTERNAL TEMP 31 DULUTH ANGS GAIN 10 AIR

COMPOUND WASE FERN ALL METHODS AND ADMINISTRATION OF A STATE OF A

PHOTOVAC



SAMPLE LIBRARY 1 JUL 20 1994 11:46
AMALTSIS 4 3 J BYRD, JR,
INTERNAL TEMP 32 DULUTH AMOS
GAIN 10 017-0188H 2-2.5

PHOTOUAC

# 1

# 7

SAMPLE LIBRART 1 JUL 20 1934 11:57 ANALTSIS # 4 J BTRD, JR. 1NTERNAL TEMP 33 DULUTH ANGS GAIN 10 817-0198H 2-2.5

WWW.actoms.com/schools/actor

PHOTOUAC

SAMPLE LIBRARY 1 JUL 20 1994 12:25 ANALYSIS = 5 J BYRD, JR, INTERNAL TEMP 33 DULUTH ANGS GAIN 10 017-0188H 9.5-10

# # # ,

SAMPLE LIBRARY 1 JUL 20 1994 12:45
ANALYSIS # 7 J BYRD, JR.
INTERNAL TEMP 34 DULUTH ANGS
GAIN 10 PPB

44. 194. A. G. S. 1415.

. . .

`t. '= '-

151.0 770

CALIBRATED PEAK 3, BENZENE

SAMPLE LIBRARY 1 JUL 20 1994 13: 4 ANALYSIS # 8 J BYRD, JR.
INTERNAL TEMP 35 DULLTH ANGS
GAIN 10 100 PPB

100.0 FFD

165.3 775

# . w 1 # P

SATPLE LIBRARY 1 JUL 20 1994 13:26 ANALYSIS 2 10 JETRO, JR. DLUTH ANGS GAIN 10 AIR

 $c_{\mu}^{(2)}(z,\tau_{\mu}^{(2)},z,\tau_{\mu}^{(2)}) = (\omega_{\mu} - \underline{z}_{\mu})^{-1}$ State of the state

CALIBRATED FEAK 1. PENSENE

SAMPLE LIBRARY 1 JUL 20 1994 12:46
ANALYSIS # 7 J BYRD, JR.
INTERNAL TEMP 34 DULUTH ANGS
GAIN 100 PPB

100.0 750

4.21

163.4 FFP

# # ĝ

SAMPLE LIBRART 1 JUL 20 1994 13:15
ANALYSIS # 9 J BYRD, JR.
INTERNAL TEMP 3S DULUTH ANGS
GAIN 10 FPB



SAMPLE LIBRARY 1 JUL 20 1994 13:45 ANALYSIS # 11 J BYRD, JR.
INTERNAL TEMP 36 DULUTH ANGS
GAIN 10 017-0198H 1.5-2



SAMPLE LIBRARY 1 JUL 20 1994 13: 3
AMALYSIS # 8 J BYRD, JR.
INTERNAL TEMP 35 DULUTH ANGS
GAIN 10 100 PPB

ו כסויףסטוףס ID A R.T.

LIMIT BENZENE 83,2 100.0 FFD TOLUENE 2 165.1 100.0 FFB 3 325.1 100.0 FFB 1 310.8 100.0 FFB E-BENSENE PF-XTLENE

a 1

SAMPLE LIBRARY 1 JUL 20 1994 19:29
AMALYSIS # 12 J BYRD, JR.
INTERNAL TEMP 36 DULUTH ANGS
GAIN 10 017-0198H 5.0-6

113.1 778 110,3 PF5

137.9 FFF



SAMPLE LIBRARY 1 JUL 20 1994 14:39
ANALYSIS # 13 J BYRD, JR.
INTERNAL TEMP 36 DULUTH ANGS
GAIN 10 917-0198H 3.5-10



SAMPLE LIBRARY 1 JUL 20 1994 15:30
AMALYSIS # 16 J BYRD, JR.
INTERNAL TEMP 32 DULUTH AMGS
GAIN 10 PPB

15P. 1 TEP



SAMPLE LIBRART 1 JUL 20 1994 15:52 AMALTSIS # 18 J BTRD, JR. INTERNAL TEMP 32 DULUTH ANGS GAIN 10 917-0208H 3.5-10

PHOTOVAC

# 1 # 2

SAMPLE LIBRARY 1 JUL 20 1994 14:56 ANALYSIS 4 14 J BYRD, JR. INTERNAL TEMP 32 DULUTH ANGS GAIN 10 017-0208H 2-2.5 PHOTOVAC

CALIBRATED FEAK 3, BENZENE

SAMPLE LIBRARY 1 JUL 20 1994 15:32 ANALYSIS # 16 J BYRD, JR. INTERNAL TEMP 32 DULUTH ANGS GAIN 10 100 PPB

> 198.9 FF5 191.4 FFF 173.7 FFF

PHOTOVAC



SAMPLE LIBRARY 1 JUL 20 1994 16: 2
AMALYSIS # 19 J BYRD, JR.
INTERNAL TEMP 37 PULLTH ANGS
GAIN 10 100 PPB

191.6 FFP 188.2 FFP

121.3 PFP

PHOTOUAC

SAMPLE LIBRART 1 JUL 20 1994 15:20 AMALTSIS 4 15 J BYRD, JR, INTERNAL TEMP 32 DILLUTH ANGS GAIN 10 017-0208H 5.5-6 д д

SAMPLE LIBRARY 1 JUL 20 1994 15:42 ANALTSIS # 17 J BYRD, JR. INTERNAL TEMP 37 DULUTH ANGS GAIN 10 AIR

CALIBRATED FEAK 3, BENTENE

Articles Controls Programa

SAMPLE LIBRART 1 JUL 28 1334 16: 5
ANALTSIS 13 J BYRD, JR.
INTERNAL TEMP 32 DULUTH ANGS
GAIN 10 100 PPB

100,0 FFP

165,6 FFP



SAMPLE LIBRARY 1 JUL 20 1339 16:19
ANALYSIS # 20 J BYRD, JR.
INTERNAL TEMP 32 DULUTH ANGS
GAIN 10 AIR

JUL 23 1334 19:23

FIELD: 30 POWER: 43

SAMPLE 10.0 CAL 0.0 0.0 EVENT 3 0.0 130.0 EUENT 4 0.0 0.0 EUENT 5 9.0 EVENT 6 0.0 0.0 EVENT 2 0.0 9.0 EVENT 8

# PHOTOUAC



ANALYSIS # 1 J BYRD, JR.
INTERNAL TENP 31 DULUTH ANGS
GAIN 10 100 PPB

# PHOTOVAC

i Colibonia ID =

TOLUENE E-BENZENE BENZENE 1 50.6 100.0 PFB 2 153.5 100.0 PFB 3 317.5 100.0 FFB 4 335.0 180.0 FFB PHOTOVAC

SAMPLE LIBRARY 1 JUL 23 1934 11:13
ANALYSIS A 2 J BYRD, JR.
INTERNAL TEMP 32 DULUTH ANGS
GAIN 10 DECTRE A/R

# PHOTOUAC

SAMPLE LIBRARY 1 JUL 23 1994 11:23
ANALYSIS # 3 J BYRD, JR.
INTERNAL TEMP 33 PULUTH ANGS
GAIN 10 021-009 ML

state master assign region of a

PHOTOUAC

SAMPLE LIBRARY 1 JUL 23 1994 11:32
ANALYSIS # 4 J BYRD, JR.
INTERNAL TEMP 33 DULUTH ANGS
GAIN 10 021-010 ML

100104-00-60 004

SAMPLE LIBRARY 1 JUL 23 1994 11:42
ANALYSIS # 5 J BYRD, JR.
INTERNAL TEMP 33 DULUTH ANGS
GAIN 10 021-014 MU

The first state of the second state of the sec



SAMPLE LIBRARY 1 JUL 23 1994 11:52 ANALYSIS # 6 J BYRD, JR. INTERNAL TEMP 33 DULUTH ANGS GAIN 10 021-026 ML

farrentes pera ingazino, in agrico a



SAMPLE LIBRARY 1 JUL 23 1994 12: 2
ANALYSIS # 7 J BYRD, JR.
INTERNAL TEMP 34 DULUTH ANGS
GAIN 10 018-0068H 2.5

SAMPLE LIBRARY 1 JUL 23 1994 12:13
AMALYSIS # 8 J BYRD, JR.
INTERNAL TEMP 34 DULUTH ANGS
GAIN 10 PPB who was one of a solution

132.9 PFB

- 21

CALIBRATED PEAK 3, DENZENE

SAMPLE LIBRARY 1 JUL 23 1994 12:14 ANALYSIS # ANALYSIS # 8 J BYRD, JR.
INTERNAL TEMP 34 DULUTH ANGS
GAIN 10 100 PPB

198.0 FFB



SAMPLE LIBRARY 1 JUL 23 1994 12:26
ANALYSIS # 3 J BYRD, JR.
INTERNAL TEMP 34
GAIN 10 PPB Herman ey

# 1

מחנים יותם ID # 8.T. LIDIT

1 80.6 100.0 PPB 2 155.7 100.0 PPB 3 313.1 100.0 PPB 4 335.6 100.0 PPB 5 335.3 100.0 PPB BENZENE TOLUENE E-BENZENE カアーメイレミハ D-XYLENE

SAMPLE LIBRART 1 JUL 23 1994 12:32 ANALTSIS 4 10 J BYRD, JR, INTERNAL TEMP 34 DULUTH ANGS GAIN 10 AIR

SAMPLE LIBRART 1 JUL 23 1994 12:42 ANALTSIS # 11 J BTRD, JR. INTERNAL TEMP 34 DULUTH ANGS GAIN 18 018-0068H 1.2

Samuel Contraction of the second

**1** 

SAMPLE LIBRARY 1 JUL 23 1934 12:57
ANALYSIS # 12 J BYRD, JR.
INTERNAL TEMP 34 DULUTH ANGS
GAIN 10 017-0108H1.5-2.5



SAMPLE LIBRARY 1 JUL 23 1994 13: 6
ANALYSIS # 13 J BYRD, JR.
INTERNAL TEMP 34 DULUTH ANGS
GAIN 10 018-0078m 2.5

 $\Gamma(\mathcal{Z}, Y(\mathcal{Q}), \mathcal{A}) = \operatorname{sol}_{\mathcal{Q}} = \operatorname{sol}_{\mathcal{Q}}(W(\mathcal{A}_{\mathcal{Q}}, Y(\mathcal{A}))) + \operatorname{sol}_{\mathcal{Q}}(Y(\mathcal{A})) +$ 

BENZENE 80.6 100.0 PPB TOLUENE

2 153.7 100.0 PPB 3 313.1 100.0 PPB 4 335.6 100.0 PPB 5 335.3 100.0 PPB E-BENZENE OF-ATLENE D-XYLENE

כמודסטונס 10 # F.T. Linit



SAMPLE LIBRARY 1 JUL 23 1994 15:37 ANALYSIS # 14 J BYRD, JR.
INTERNAL TEMP 35 DULUTH ANGS
GAIN 10 100 PPB

Vil time o

1 פאונוסקחם 10 # R T rinit

BENZENE TOLUENE

2 161.7 100.0 PPB 3 317.3 100.0 PPB E-BENZENS TR-STLENE 1 311.0 100.0 PPB 5 101.7 100.0 PPB D-XYLENE

SAMPLE LIBRARY 1 JUL 23 1359 15:50
ANALYSIS = 15 J BYRD, JR.
INTERNAL TEMP 35 DULUTH ANGS
GAIN 10 AIR

PHOTOUAC SAMPLE LIBRARY 1 JUL 23 1994 16: 0
ANALYSIS = 16 J BYRD, JR.
INTERNAL TEMP 36 DULUTH ANGS
GAIN 10 021-00950

**a** 1

SAMPLE LIBRARY 1 JUL 23 1934 16:11 ANALYSIS # 12 J BYRD, JR. INTERNAL TEMP 36 PULLITH ANGS 10 021-00950 GAIN

1 3

SAMPLE LIBRARY 1 JUL 23 1334 16:21 ANALYSIS # 18 J BYRD, JR. INTERNAL TEMP 35 DULUTH ANGS GAIN 12 921-0065D



SAMPLE LIBRARY 1 JUL 23 1994 16:31 ANALYSIS # 19 J BYRD, JR. INTERNAL TEMP 35 DULUTH ANGS GAIN 10 021-0075D STAPY

I 9

STOP 9 03C.2

SAMPLE LIBRARY 1 JUL 23 1994 17: 5

SAMPLE LIBRARY 1 JUL 23 1994 17: 5

INTERNAL TEMP 35 DILLUTH ANGS

GAIN 2 1 PPM

Compound that the state of the Apparagn

JMK (1, Tue)	12.4	2. 4	9115
Service State	14 2		
Control of the State of			
Selection of the	 2 7.2	2 .0	- 2
#190 KINGS	24.2	9.1	

# 

# PHOTOVAC

SAMPLE LIBRARY 1 JUL 23 1994 16:91
ANALYSIS # 20 J BYRO, JR,
INTERNAL TEMP 35 DULUTH ANGS
GAIN 10 018-0028h .8-1.3

214.3 PFP 653.6 PPP 520.8 PPP

# PHOTOVAC

1 COPPOUND 10 = R.T. LIPIT

 BENZENE
 1
 81.2 1.000 PPH

 TOLUENE
 2
 161.2 1.000 PPH

 E-BENZENE
 3
 312.0 1.000 PPH

 NPPH
 4
 340.1 1.000 PPH



INTERNAL TEMP 36 DULUTH ANGS
GAIN 2 AIR

Company Series (Series (1997) Series (1997)



SAMPLE LIBRARY 1 JUL 23 1994 12:32
ANALYSIS # 25 J BYRD, JR.
INTERNAL TEMP 35 DULUTH ANGS
GAIN 2 018-0020H 2.5

GOTE MUST Jump

TEIN 1

3.551 ררח

3,224 PFP 4,933 FFP





SAMPLE LIBRART 1 JUL 23 1934 18: 4 ANALYSIS # 27 1 BYRD, JR.
INTERNAL TEMP 36 DULUTH ANGS 2 018-0078H 2.5 Number of the second

A 49 500



SAMPLE LIBRARY 1 JUL 23 1994 18:18
ANALYSIS = 28 J BYRO, JR.
INTERNAL TEMP 36 DULUTH ANGS
GAIN 2 016-0028H0.8-1.3

42,640 Land Carlot

# 10

4 13

SAMPLE LIBRART 1 JUL 23 1334 18:30

 $P_{\mu\nu}^{(1)}(m_{\mu}^{2}(x_{1},x_{2})) = \min_{i \in \mathcal{I}} P_{\mu\nu}^{(1)}(m_{\mu}^{2}(x_{1},x_{2})) = p_{\mu\nu}^{2}(m_{\mu}^{2}(x_{2},x_{2})) = p_{\mu\nu}^{2}(m_{\mu}^{2}(x_{2},x_$ 

018-0028H 2.5

ANALYSIS # 29 J BYRD, JR.
INTERNAL TENP 36 DULUTH ANGS

# 16 # 12

GAIN



SAMPLE LIBRARY 1 JUL 23 1994 18:43 AMALYSIS # 30 J BYRD, JR. INTERNAL TEMP 35 DULUTH ANGS 2 1 PPN

1.696 FFF

# 1.020 FFR 1.020 FFR 1.020 FFR 2.050 FFR ar sold ja sis fluide a of sold a of sold sold a sold sold sold a sold sold sold sold

Schiple Library 1 Jul 23 1994 12/58
schiple Library 1 Jul 23 1994 12/58
schiple 26 J BYRD, JR.
Internal Tenp 36 Duluth ands
Gain 2 1 PPH BTEX

SUPPOSE A PER CERT ALSO MÉARISM

1 3

1 32 8

CALIBRATED PEAK 2, DENTENE

SAMPLE LIBRARY 1 JUL 23 1994 12:52 ANALYSIS # 26 J BYRD, JR.
INTERNAL TEMP 35 DULUTH ANGS
GAIN 2 1 PPM BTEX

1.000 FFF

1.302 FFF

CALIBRATED FEAK 2. DENEENE

SAMPLE LIBRARY 1 JUL 23 1934 18:45 ANALTSIS 4 30 J BTRD, JR. INTERNAL TEMP 35 OULLUTH ANGS GAIN 2 I PPM

1.760 777

# PHOTOVAC

n 2

SAMPLE LIBRARY 1 JUL 23 1994 18:57 AMALTSIS # 31 J BYRD, JR. INTERNAL TEMP 35 DULLUTH ANGS GAIN 2 AIR

PHOTOUAC

1 CORPOLNO 10 # R.T. LIGHT

## PHOTOVAC



SAMPLE LIBRARY 1 JUL 23 1934 19: 8 ANALYSIS # 32 J BYRD, JR. INTERNAL TEMP 35 DULUTH ANGS GAIN 10 PPB

# PHOTOVAC

) ՀՕՌՔՕՍՒԹ 10 # Է.Ծ. ՆՀՌ11

BENZENE 1 01.2 100.0 FFF TOLUENE 2 162.1 100.0 FFF E-BENZENE 3 310.2 100.0 FFF FP-XYLENE 4 341.5 100.0 FFF 0-XYLENE 5 402.5 100.0 FFF

# PHOTOVAC



SAMPLE LIBRARY 1 JUL 23 1994 19:19
ANALYSIS # 33 J BYRD, JR.
INTERNAL TEMP 35 DULUTH ANGS
GAIN 10 AIR

## PHOTOVAC



SAMPLE LIBRARY 1 JUL 23 1994 19:29
ANALYSIS # 34 J BYRD, JR.
INTERNAL TEMP 36 DULUTH ANGS
GAIN 18 016-0078H9.6-1.3

2.24. . 8. . . . . . . . . .

> 234.6 FFP 956.0 FFP 205.2 FFP

# PHOTOVAC



SAMPLE LIBRARY 1 JUL 23 1334 13:42
ANALTSIS = 35 J BYRD, JR,
INTERNAL TEMP 36 DULUTH ANDS
BAIN 10 018-0028H0.8-1.3

166.3 FFB 183.6 FFB 136.8 FFB



SAMPLE LIBRARY 1 JUL 23 1994 19:54 ANALYSIS # 36 J BYRD, JR. INTERNAL TEMP 36 OULUTH ANGS GAIN 10 100 PPB

129.7 FFB

# PHOTOVAC

CALIPRATED TEAK 3, DENSERE

SAMPLE LIBRARY 1 JUL 23 1994 19:56 AMALYSIS 2 36 J BYRD, JR. INTERNAL TEMP 36 DULUTH ANGS GAIN 10 100 PPB

100.0 750

187.0 FFB



SAMPLE LIBRARY 1 JUL 23 1994 28: 7 ANALYSIS # 37 J BYRD, JR. INTERNAL TEMP 36 DULUTH ANGS GAIN 18 AIR













STOP @

GAIN

BENZENE אווכאאוו

TOLUENE

E-BEN, MP-XYL

ANALYSIS #

בהאת פאטפקחס ピスポッシェン

INTERNAL TERP 33

430.0

SAPPLE LIBRARY 1 JUL 13 1994 13:44

19

J BYRD, JR. DULUTH ANGS

S 221-029-1.5-2.0

3 31.7 3.9 US 4 28.3 126.0 FFF 5 117.4 951.3 mUS

151.5 99.24 PPB 324.9 277.1 FFF





STOP 9 438.8

SAMPLE LIBRARY 1 JUL 13 1994 14: 6

AMACTSIS 2 21 J BYRD, JR.

INTERNAL TEMP 33 DULUTH ANGS

GAIN 19 821-823 1.5-2.9

כפתפסטואם אאתב PEAK R.T. AREA/PPN

2 31.9 11.8 US 3 77.3 5.8 US 4 117.4 1.8 US 5 151.5 1.8 US UNKNOUN UNKNOUN nukuoni nukuoni nukuoni 327.1 5.2

COPPOUND ID # F.T. LINIT

BENZENS 77.0 100.0 FFD 2 151.5 199.9 FFB 3 327.1 199.9 FFB TOLUENE E-BENZ, NF-XTL

3 **=** 1

STOP 0 430.0
SAMPLE LIBRARY 1 JUL 13 1994 14:20
ANALYSIS 22 J BYRO, JR.
INTERNAL TEMP 33 DULUTH ANGS AIR BLANK

PEAK R.T. AREA PPN COMPOUND NAME 31.2 7.4 US 3 78.3 38.41 PPB 4 117.4 1.7 US

BENZENE



STOP Q 423.0 SMIPLE LIBRART 1 JUL 13 1994 19:28 ANALYSIS # 23 J BTRD, JR. ANALTSIS # 23 INTERNAL TEMP 33 GAIN 10 PULLITH ANGS 100 PPB

COMPOUND NAME PEAK R.T. AREA/PPM

35.4 31.5 US 3 76.6 (28.5 FFF 4 111.2 1.4 US BENZENE חאאטהא 5 151.5 46.21 PPB 6 327.1 221.3 FFB TOLLIENE E-BENZ, MP-XYL

z + STOP 9 430.8 SAMPLE LIBRARY 1 JUL 13 1934 14138 ANALYSIS 24 J BYRD, JR. ANALYSIS # 24 INTERNAL TEMP 33 J BTRD, JR. DULLITH ANGS MINS 12 בחפת סאטספחם PEAK R.T. AREA/PPH UNKNOUN 3 77.1 91.46 PP3 4 117.4 1.6 US 5 152.6 30.90 PP9 2 327.1 221 -BENTENE NKHOUN TOLUENE

E-BENT, MF-XYL

arangan arang 1945 - A



UNKNOUN 49.7 188,9 US 86.9 19.9 US TOLLIENE 5 E-BENZ, MP-XTL 327.1 38.01 PPB



CALIBRATED PEAK 3. DENZENE

SAMPLE LIBRARY 1 JUL 13 1994 15: 1
AMALYSIS 2 '26 J BYRD, JR.
INTERNAL TEMP 34 DULUTH ANGS
GAIN 5 100 PPB

COMPOUND NAME PEAK R.T. AREA/PPM

UNKNOUN 2 32.2 2.7 US
9ENZENE 3 29.3 100.0 FFP
UNKNOUN 4 117.4 752.6 0US
100.UENE 5 152.6 110.1 FFP
E-BENZ, FP-XYL 6 322.1 225.6 FFP



STOP 9 430.0 SAIPLE LIBRART 1 JUL 13 1934 15:12 ANALTSIS 2 27 INTERNAL TEMP 34 DULLUTH ANGS GAIN 5 100 PPB

COMPOUND MARE FEAK R.T. AREA/PFM

UNKNOLN 3 31.7 3.1 US
UNKNOLN 4 78.3 2.2 US
UNKNOLN 5 117.4 782.7 mUS
UNKNOLN 9 322.6 719.8 mUS

# PHOTOVAC

CONFOUND ID # R.T. LINIT

BER 1 29.3 100.0 FFP 101 2 152.6 100.0 FFB E-BEN, NP-XTL 3 3727.1 100.0 FFB

# PHOTOUAC

STOP 8 430.0

SAPPLE LIBRART 1 JUL 13 1394 15:23

ANALYSIS 28 JETRO, 34

INTERNAL TENP 34 DULUTH ARG.

GAIN 5 100 PPB

COMPOUND NAME PEAK R.T. AREA/PPM

UNKNOUN 2 32.8 2.6 US BEN 3 28.3 21.84 PPB UNKNOUN 4 117.4 149.2 MUS

# PHOTOUAC



STOP 9 430.0 SAMPLE LIBRARY 1 JUL 13 1334 15:32 AMALYSIS 2 23 J BYRD, JR. INTERNAL TEMP 34 DULLUM ANGS GAIN 35 021-023 10:5-11

UNKNOUN 2 2 31.6 4.1 US
UNKNOUN 3 38.5 8.4 US
UNKNOUN 4 50.7 8.7 US
UNKNOUN 5 53.1 1.6 US
UNKNOUN 5 53.1 1.6 US
UNKNOUN 6 68.1 2.3 US
BEN 7 66.7 647.0 FTB
UNKNOUN 8 97.5 3.2 US
ION 8 151.5 333.0 FTB
E-BEN, IPP-XYL 12 324.4 136.2 FTB

# PHOTOVAC

JUL 13 1331 15:36

FIELD: 30 POWER: 42 9.0 SAMPLE 0.0 2.0 CAL e.a 0.0 E THAVE 0.0 0.0 EVENT 4 0.0 0.0 EVENT 5 0,0 0.0 a. a a.a EAELL & 0.0 0.0

# PHOTOVAC

לבו בו לבו בו זמן

FIELD: 30 POWER: 43

# PHOTOVAC



STOP 9 430.8

SAMPLE LIBRARY 2 JUL 13 1994 15:47

ANALYSIS 4 32 J BYRD, JR

INTERNAL TEMP 34 DULUTH ANGB

GAIN 5 1 PPM

1 PPM

СОПРОЦИО МАПЕ РЕАК В.Т. АКЕЛ/РРП

UNKNDLN 1 9.5 5.3 жUS
UNKNDLN 3 31.7 3.5 US
UNKNDLN 4 76.8 10.6 US
UNKNDLN 5 111.9 1.5 US
111.1 233.5 US



PERK R.T. AREA/PPM

3 329: 9 398: 8 mbs

MHBUSHIN



















EBEN, MPXYL

# PHOTOUAC

5 329.3 Z.711 FFF

STARE 12.2 STOP 12.2 STOPPLE LIBRART 2 JUL 13 1994 12:35 ANALTSIS # 42 J BYRO, JR INTERNAL TENP 94 DULLUTH ANGB GAIN 2 1 PPN

COMPOUND NAME PEAK R.I. AREA/FPM



STOP @ 439.0 SAMPLE LIBRART 2 JUL 13 1994 17:93 AMALTSIS # 43 J BYRD, JR INTERNAL TEMP 35 DULUTH ANGB GAIN 25 AIR

COMPOUND NAME PEAK R.T. AREA/PPM

KNOUN 1 32.0 5.3 US KNOUN 2 111.8 241.8 mUS PHOTOUAC

STOP 9 +30.3
SARPLE LIBRARY 2 JUL 13 1334 17:55
ARACTSIS # 44 J BYRD, JR
INTERNAL TERP 35 DULUTH ANDB
GAIN 2 921-922 14.5-15

GAIN PERK R.T. AREA/PPM COMPOUND NAME 32.6 304.1 mUS DUKNONU DUKN_ONU 32.6 384.1 mus 32.7 1.2 US 51.9 832.1 mUS UNKNOWN 59.6 555.2 mus DINKNOUN 69.1 393.9 mVS 79.5 248:1 PPB NUKNOWN SENZ 28.5 924.7 mUS 28.3 524.5 mUS 108.6 635.7 mUS UNKNOWN rukudri ukudri 121.7 718.4 mUS UNKNOWN 151.5 11.79 PPB -OLUENE 11 12 175.6 110.6 mUS NKNOUN 15 329.3 11.95 PPB EBEN, MPXYL



STOP 9 430.0 SAMPLE LIBRART 2 JUL 13 1334 18: 6

MALTSIS TEMP 35 JUE 17, 1449.5-15

MIERNAL TEMP 35 JUE 17, 1449.5-15

MI

## CALIDRATED LEAK 3. DENSENE

SAMPLE LIBRART 1 JUL 15 1234 12:28
ANALYSIS 4 14 J BYRD, JR,
INTERNAL TEMP 34 DULUTH ANGS
GAIN 5 100 PP8

COMPOUND NAME PEAK B. C. AREARPED

| 100000000 | 2 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.

# PHOTOUAC

STHPT .....

STOP 4 933.3

SAMPLE LIBRART 1 JUL 15 1234 13:38

ANALYSIS 4 15 J BYRD, JR.

INTERNAL ISMP 34 OULUTH ANGS

GAIN 5 AIR

COMPOUND NAME OF FAX. P. T. AMERICAN

UNIMOUN

2 12.1. 2.2 US



# PHOTOUAC

COMPOUND MAME FEAK R.T. AREA/PPM UNKHOUM 1 32.3 744.7 mUS

UNKNOUN 37. 4 259. 7 mUS 51.5 325.7 mUS UNKNOUN 3 53.6 324.7 mus RNKNOUN חאגאטהא 68,6 204,8 mUS BENZ 5 28.9 102.5 PPB האמטרא 7 38,8 278,7 mUS UNKNOUN 8 199.4 299.1 mUS

PHOTOUAC



705.7 405.7 2 JUL 13 1934 18:33 SAMPLE LIBRARY 2 JUL 13 1934 18:33 ANALYSIS 4 3 JORGAN JR SAMPLE 
COMPOUND NAME PEAK R.T. AREA/PPM מאמטבא 32.4 4.3 US 39 5 12 9 US LINKNOWN 2 UNKNOUN 55.5 20.3 US INENGUN 62.7 6.2 45 BENZ 5 92.4 6,101 770 **CMRNSHU** 129:3 928:9 "US 9 151.5 146.4 FPB TOLUENE UNKNOWN \$ 175.6 362.4 mUS 10 214.3 94.8 mVS UNKNOUN 11 255.2 121.8 mUS EBEN, MEXTL 12 305.5 483.8 PPS EBEN, EPXYL 13 328.3 272.5 888

# PHOTOVAC



SAPPLE LIBRARY 2 JUL 13 1994 18:51 ANALYSIS 4 49 J BYRD, JR INTERNAL TENP 34 DULUTH ANGB GAIN 2 1 PPN

COMPOUND NAME PEAK R.T. AREA/PPM

# PHOTOVAC

CALIPRATED FEAR 2, BENE

SAMPLE LIBRARY 2 JUL 13 1994 18:53
ANALYSIS # 49 J BYRD, JR
INTERNAL TEMP 34 DULUTH ANGB
GAIN 2 1 PPM

CONFIGURE NAME FEAK D. C. AREAKEPP

ENKNOUN 1 31.7 1.7 05
MENZ 2 22.7 1.000 FFP
UNKNOUN 3 111.0 030.1 MJS
TOLUENE 4 152.6 236.4 PP9
EBEN, PRXIL 5 027.1 2,430 FFP

PHOTOVAC



SAMPLE LIBRARY 2 JUL 13 1994 19: 4
ANALYSIS = 50 J BYRD, JR
INTERNAL TEMP 34 DULUTH ANDS
GAIN 2 1 PPM

PHOTOVAC

2 CONFOUND ID # K.T. LINIT

| 1 | 27.3 1.000 FFN | TOLUENE | 2 | 152.8 1.000 FFN | EBENZ | IPXTL | 3 | 327.1 1.000 FFN |









JUL 19 1339 D:90 FIELD: 23 POUER: 43 8 4 SAMPLE EVENT 3 0.0 a. a 0.0 a.a 0.0 EVENT 5 0.0 0.0 EVENT 6 0.0 0.0 EVENT > 9.0 0.0 EVENT 8 a a



STOP 3 420.0

SATTPLE LIBRARY 1 JUL 14 1994 9: 5

ANALYSIS 4 3 J STRD, JR,

O'H HTH ANGS 10 100 PFB

COMPOUND MARK PEAK R. I. AREA/PPR

UNKNOWN HINK WELL

25.4 Jl.1 US 



STOF 8 138.8 SAMPLE LIBRARY 1 JUL 14 1994 9:21 ANALYSIS # אר , פאדפ נ INTERNAL TEMP 23 DULUTH ANGS

COMPOUND NAME PEAK R. T. AREA/PPM

32,0 2,7 US 81,5 322,8 _MUS Huknonij アンドルロバル 158.5 982.2 mU3 2 316.1 218.5 mU5 UNKNOUN ENFINCES 8 338.5 2.2 US

COMPOUND 10 = R.T.

BENZENE 81.3 100.0 PFB -DLUENE

2 156,5 100,0 PFB E-BENSENE 316.1 100.0 PPD

MP-XYLENE 1 333.5 100.0 PPB

START 423.3

SOP 400.0

SAPPLE LIBRARY 1 JUL 19 1994 9:03

ANALYSIS 2 J BYRD, JR.

INTERNAL TENP 29

AIR

AIR

SAME AND AIR

SAME AND AIR

AIR

COMPOUND NAME FEAK R.T. AREA/POM UNKNOUN

1 00.0 1.5 45



SAMPLE LIBRARY 1 JUL 14 1934 3:43 "HIERWAL TENE 30 DOTTO H 4422 GAIN 5 021-029 2.0-2.5

CONFOUND NAME FEAK R.T. AREA/PPM

2 22.5 1.2 75

IIIUIUVULI STORT _____ 1 3 433.0

SAPPLE LIBRART 1 JUL 14 1994 3:53 PREERRAS TENE 38 DUEUFA ANGS 021-021 2.0-2.5

COMPOUND MADE PEOK 8.1. AMEDITED

DNKNOUN 7 32.4 3.5 05

.<u>_s</u>....____ 1 4 STOP 9 430.2

SAMPLE LIBRARY 1 JUL 14 1994 10: 3 AMALYSIS = . אר 'מאגפ ר פ INTERNAL TERP 30 **PULUTH ANGS** GAIN 021-020 10.5-11\$

COMPOUND NAME FERK R.T. AREA/FFM UNKNOWN 2 72.4 7.8 95

¥ 7

STOP 8 439.0 SAMPLE LIBRARY 1 JUL 14 1994 10:14 MALTSIS # J BYRD, JR. INTERNAL TEMP 30 DULUTH PRGS 921-921 6.5-7.9 CONFOUND NAME FERK R.T. AREA/FFM

מאאוניים

2 32.5 2.6 33



STOP 0 433.0 SAMPLE LIBRARY 1 JUL 14 1994 18:24 INTERNAL TEMP 31 DULUTH PINGS 5 021-024 6.5-7.0

COMPOUND NAME PEAK S.T. PRESKPPM 2 32. 4 2.8 US UNKNOUN

STOP 6

STOP 6 430.0 SAMPLE LIBRARY 1 JUL 14 1994 10:33 AMALTSIS # 11 J BYRD, JR. INTERMAL TEMP 31 DULUTH AMGS 100 228

COMPOUND NAME PEAK R.T. AREAZPPM

UNKNOUN 32.4 2.3 US BENZENE 3 82.0 82.81 579 TOLLIENS 6 153.1 85.81 PPS E-BENZENE 2 012.3 00.56 PPB MP-XTLENE 9 311.5 32.22 PPB

CALIPRATED PEAK 3. DENTENE

SAMPLE LIBRARY | JUL 14 1934 10:34 ANALTSIS ANALTSIS INTERNAL TEMP 3] DULUTH ANG INTERNAL TEMP 3] DULUTH ANG GAIN 5 100 PPB

COMPOUND NAME CEAR B.T. ASSESSED 2 70,4 0,7 33 BENBENE

80.0 100.0 FFB 5 1951 3418 53 9 041.5 105.0 FFB



STOP @ 400.0 SAMPLE LIBRARY 1 JUL 14 1004 11:2: ANALYSIS # 12 J BYRD, JR. ANALYSIS # 12 J BYRD, JR.
INTERNAL TEMP 32 DULUTH ANGS
GAIN 5 100 PPB

COMPOUND NAME PEAK R.T. AFERITT

2 22.2 1.7 US 2 82.2 324.4 mUS RNKNOWN UNKROWN RNKNORM 6 153.2 623.3 mUS じろれるしにな 3 3431 230 3 FUS

כמורסטאם 10 # F.T. LIUIT

PENSENE 1 82.2 100.0 FFB 2 153.7 100.0 FFB E-BENSENE 3 312.9 100.0 FFB MF-XYLENE 1 313.1 100.0 FFB STCF 4 430.0 SICT 4 936.0
SAMPLE LIBRARY 1 JUL 14 1934 11:34
ANALYSIS 2 13 J BYRD, JR.
INTERNAL TEMP 32 DULUTH ANGS
GAIN 5 AIR

COMPOUND MADE FEAK R.T. AREA/FFM **UNKNOUN** 2 32.5 2.0 05



STOP 8 430.0 SAMPLE LIBRARY 1 JUL 14 1934 11:44 ANALYSIS # 14 J BYRO, JR.
INTERNAL TENP 32 DULUTH ANGS
GAIN S 021-024 6.5-7.0

COMPOUND NAME PEAK R.T. AREA/PPM

UNKNOUN 2 32,2 3,3 US



115 JE	JLBTAD1	23A. 1	1:54
32 g	DULUTH I	PNGS	
5 4	321-021	11.5-	12
FER	F.11	AREA	/PF#
2	23, 1	3.0	us
3	38.5	1.8	υs
4	41.1	2.2	ŲS
3	50,2	323,5	೯೮ವ
5	55.5	137: 8	<b>6</b> 43
8	71.5	135.2	mus
3.	92.2	23. ZR	PP3
13	130 0	65.9	evs
13	:53.0	19.11	rre
	32 (FERM 2 3 6 6 3 3 13	32 PULUTH   S	5

# STCP 9 430.0 SAMPLE LIBRARY 18 JULBYA 12: 4 THERAL TEMP 33 DULUTH ARE 1: 5 GAILAUND MANE STEAMSIFASS PAREASPRI COPP. **UNKNOUN** 2 32,5 1.9 US

# STOPT. 4 ...1 7 3 E 10 SAPPLE LIBRARY 1 JUL 14 1994 12:15

INTERNAL TEMP 33 DULUTH ANGS GAIN 5 921-929 6,5-2,9 COPPOUND MAKE PEAK B.T. CHECKEST חאצאנה 2 02.0 0.1 05 0 08,0 1.8 05 UNKNOWN 42.6 316.1 mus DISKUL DA 5 52.4 119.3 #VS 6 21.2 1^{53.4} F⁹⁵ 2 82.3 105.3 FFP DIMENSION BENTENE

ANALYSIS # 12 J BYRD, JR.





24APLE LIBRART 1 JUL 14 1234 12:36 ANALYSIS # INTERNAL TERP 33 DULUTH ANGS GAIN S 100 PPBP

COMPOUND NAME PEAK R.T. AREAKARM UNKNOUS 2 33,0 2,0 US BENKENE a ac, a sa, 10 nns TOLUENE 6 153.3 86.25 519 E-BENEENE 2 028.0 30 as pra SF-XNLENE 8 299.7 199.2 FFP

CALIPRATED FEAK S. BENTENE

SAPPLE LIBRARY 1 JUL 14 1994 12:37 AMALTSIS # 19 JATED, JR. INTERNAL TENP 33 DULUTH ANGS GAIN 5 100 PPBP

COMPOUND NAME PEAK R.T. AREA/PPM

BENEENE BENEENE 2 23.9 2.3 US

.40.0 FFP

6 153.3 32.02 FPS

TOLUENE

E-RENZENE

195.7 779 8 311.3 ZPZ.> FFP MP-XYLENE



GAIN

5 AIR

CONTRACTO FORE CREAK ALT. MILA. TO

32,6 0,7 00



ANALYSIS # 21 JEAN JR. 13:35
ANALYSIS # 21 JEAN JR.
ANTERNAL TERP 09 DULUTH ANGS

5 821-918 2.0-2.5 COMPOUND NAME FERK R.T. AREASEPH

2 23.1 8.2 US

# START F # STOP @ 435.9 -APPLE LIBRARY 1 JUL 14 1539 13:46 ANALTSIS # 22 J BYRD, JR. Dylugyapyjss-14

COMPOUND NAME PEAK R.T. OREOMPEN

2 33,5 18,5 95

UNKNOUN

STOFF Languages And § 3

stor a scb.2 SAMPLE LIBRARY 1 JUL 19 1339 13:58 ANALYSIS = 23 J 8780, JR. INTERNAL TERP 24 DULUTH ANGS 5 021-019 3.5-10.0

confound were there for an engine ATTENT ON T 03,1 8 8 93

STAFT .... ₹ §

STOP 9 13-78- 1 JUL 14 1994 14:10 , פירס, ופ. 7 29 INTERNAL TEMP 34 DULUTH ANGS AIA 5 021-012 19.5-15

CORROND HADE FERR E.T. AREANTID C 50, P 3.3 US 1,74

BENZENE 3 62.6 2.311 FFB



STOP 9 430.0 SAMPLE LIBRARY ! JUL 14 1334 14:20 ANALTSIS # 25 J BTRD, JR. INTERNAL TEMP 34 DULLETSPROS-2. a

COMPOUND NAME PEAK R.T. AREAVERM **הארוכחו** 2 02.8 h.; 0g

432.0 SAMPLE LIBRARY 1 JUL 14 1034 14:01 ANALYSIS # 26 J STRD, JR. INTERNAL ISPE 74 GAIN 5 100 PPS 100 PPS

KOTTOURO RAME - JEDR D... MEDRITHM 0 000 003 00 0 40 0030 003 5 0000 64.31 004 DINKINDS A Bunkeine Sunkerne 4.70mm \$ 3000 Fre

CALIDRATED FEAK 3, BENZENE

SAMPLE LIBRARY 1 JUL 14 1334 14:36 ANALTSIS # 26 J BTRD, JR. INTERNAL TERP 34 DULUTH ANGS 100 668

COMPOUND NAME CEAK R.T. AREAVERS ^{UN}KNOUM 2 90.7 1.8 95 SENTENE 81.1 100.0 FFP TOLUENE 6 133.2 80.31 FPB EHEENVENE 2 120.0 30. ta 773

BRHKYLENE

7 219.0 106.6 FFP

STOP # 190.2 SAMPLE LISPARY 1 JUL 14 1934 14:42 ANALTSIS # 22 J BYRD, JR. INTERNAL TEMP 35 DULUTH ANGS GAIN 5 AIR

COMPOUND MADE FEAK R.T. AREAZPED 72.7 1.0 45



AMALTSIS # 28 J BYRD, JR.

INTERNAL TERP 35 DULUTH ANGS

5 221-016 2.0-2.5

commount here meet but, organish CHRISTIN C 10,8 F,8 US

· {--#-- }-----START____ £ 7

STOP 9 400.0 SAMPLE LIBRARY 1 JUL 14 1994 15: 9 AMALYSIS # 29 J BYRD, JR.
INTERNAL TEMP 95 DULUTH ANGS
GAIN 5 921-016 6.5-7.0

CONFIGURD HAME FEAK R. F. OFERAPPET

UNKNOWN 2 22.2 1.8 US



STOP & 120.0 SAMPLE LIBRARY 1 JUL 14 1994 15:20 ANALYSIS # 30 J BYRD, JR

"NTERNAL TEMP 35 DULUTH ANGS GAIN 5 021-016 10.5-11 COMPOUND MADE PEAK R.T. AREA/PPM

пикиоли 2 33.1 3.2 US



SARFLE LIBRART 1 JUL 19 1354 15:30 SMITTLE CIDENTIAL

ANALYSIS # 31 J BYRO, JR.

INTERNAL TEMP 35 DULLITH ANGS

GAIN 5 021-019 6.5-2.0

COTFOUND NAME FEAK R.T. AREA/FFF מהשאאניהא 0 90,4 5,1 US



STOF # 420.0 SAMPLE LIBRARY 1 JUL 14 1994 15:40 ANALTSIS # 32 J BTRD, JR. INTERNAL TEMP 35 DULUTH ANGS

GAIN 5 021-019 10.5-11

COMPOUND NAME FEAK R.T. AREA/PPM FRHF57, 2 2015 6,2 US g go.1 16.41 FFB

# .......



STOP A 456.8 SAPPLE LIBRARY 1 JUL 14 1034 15:50 ANALYSIS # 33 J BYRD, IR.
INTERNAL TEMP 35 DULUTH ANGS
GAIN S 100 PPB

COPPOUND NAME PEAK B.T. AVERAGED

Livery and \$ 92.2 2.2 00 3 3... 127.6 FFF 10.1.14 6 .33. 2 105.2 FFD 2 0.0.6 102.1 FFD andersti. MARKELE . 3 261.3 164.1 FFB

CALIBRATED PEAK 3, BENZENE

SAMPLE LIBRARY 1 JUL 14 1994 15:54 33 J BYRD, JR. P 35 DULUTH ANGS ANALYSIS # INTERNAL TEMP 35 GAIN 100 PPS

CONFOUND NAME FEOK E.T. AREAVERM

UNENEUR 2 32.2 2.0 Vs 2 81.4 100.0 FFB 6 158.5 80.92 BENTENE .LLUENE e-BENGENE 2 012.5 32.21 289 SP-XYLENE 8 081.2 12p,6 FFP



STOP 9 433.3 SAMPLE LIBRART 1 AMALTSIS 2 35 INTERNAL TEMP 35 GAIN S ING PPB DULUTH ANGS 1 BARD; 238, 16: 6

COMPOUND NAME FEAR R.T. OREARTHM USKNOUN 2 32,3 2,8 08 UNKNEUN 2 81.3 884.3 595 UNKROUN 6 158.2 529,2 pus

PINKHORM 7 018.0 179.8 mus UNKNOUN 2 241.6 634.8 mus



CONTOUND

BENZENE TOLUENE

#1.5 100.0 FF 2 158.7 100.0 PFP

E-BENZENE

3 315,2 100,0 FFB

FF-ATLENE

1 311.6 100.0 228

STORT ... .. #. 1.

4 7

STOP # 130.8 SAMPLE LIBRARY 1 JUL 19 1999 16:18

S J BYRD, JR.

35 J BYRD, JR.

35 DULUTH ANGS INTERNAL TERP 35

COMMOUND NAME OFFICE A.T. AGENTANT

UNKNOUN

ANALYSIS =

2 72.7 2.9 95

STOP 3 420.0 SAMPLE LIBRART 1 JUL 14 1234 12: 3 ANALTSIS 2 36 J BYRD, JR.

COMPOUND NAME PEAK R.T. AREA/PAM

5

INTERNAL TEMP 34

LINKHOUN

2 31.9 3.8 03

DULUTH ANGS 021-015 1.5-2.0 # 4 ....<u>#</u> 7 1 1

5:01 mm d SAMPLE LIBRART 1 JUL 14 1934 12:19
ANALYCIS = 37 J BYRD, IR.
INTERNAL TEMP 39
QUILUTH ANGS
QUILWIS 5 GC1-015 6.5->.0

המו אירוטאה אפרד בבמא מיד. מיקאאופר

THE STATE 65.4 5.2 65

....... # 3

STOP 3 470.0 SAMPLE LIBRART 1 JUL 14 1994 17:29 SNALTSIS 4 38 J BYRD, JR. ANALYSIS # 38 J BYRD, JR. INTERNAL TENP 34 DULUTH ANGS 5 021-015 10.5-11

compains have PEAK A.T. BREAKRED

BARRICKS 32.2 3.7 05



SAMPLE LIBRARY 1 JUL 14 1934 17:42
ANALYSIS = 33 J BYRD, JR
INTERNAL TEMP 34 DULUTH ANAS GAIN 021-015 13-13,5 5

COMPOUND MARE PEAK S.T. AREAZPEN

рикисли

2 20.0 0.0 02

รเมษาตัว คุณแล้ SAMPLE LIBRARY : JUL 14 1994 17:51

INTERNAL TERP 34 PULLITH ANGS

5 100 258

Committee Court CEPA Sell MERCETT

Line BEHRENE TUBBLE

24.2 . 2.1 00 3 31.3 34.33 pps 5 .32.2 /9, ia ma

EHIENTENE TENENT ENE

CONTRACT EINE

7 018.1 43.42 000 2 018.5 100.0 FFB

CALIBRATED FEAK 3, DENTENE

SAMPLE LIBRARY ! JUL 14 1994 17:52 ANALTSIS # 90 INTERNAL TEMP 33 ANALTSIS A ש מאדם, שה. **PULLITH ANGS** GAIN 100 668

COMPOUND HAME PEAK R.T. MREAVERM

Unstructure 90.0 S.S US 81 3 100.0 FFP BENBERS TOUTIENE f 152, 2 30, 39 eng E-BENSENS 2 Tab. 1 39, 66, 193

8 900.5 156.7 FFP

START___ . . . . الما . . الما . # 4

STOP 8 129.8 SAMPLE LIBRARY 1 JUL 14 1334 18: 4 ANALYSIS # 41 J BYRD, JR. INTERNAL TEMP 33 DULUTH ANGS GAIN 5 AIR

COMPOUND NAME FERK F.T. PREFYREN

UNKROUN

7 22.1 1.8 05

JUL 15 1229

FIELD: 30 POWER: 44

SAMPLE	8.0	10.0
CAL	0.0	0.0
EVENT 3	9.0	100.0
EUENT 4	0.0	0.0
EVENT 5	2.2	0.0
EUENT 6	0.0	9.9
EUENT 2	2.2	0.0
EVENT 8	0.0	0.0

BENZENE	1	88.)	100.0	rrø
TOLLENE	Z	155.3	100.0	ppb
EIHYLBENZENE	3	311.6	100.0	PPB
343714-91	4	334.4	100.0	PFB



SAMPLE LIBRARY 1 JUL 15 1994 9:33 J BYRD, JR. DULUTH ANGS INTERNAL TEMP 29 100 PPB GAIN

compound hame PEAK S.T. ASER-PEA

UNKNOUN	1	32,5	3.5	ین
UNKROUN	2	38,0	2.3	U.S
BENRENE	2	82.8	186.5	CFP
TOLLIENE	.5	153.3	221.0	CCB
E-BENBENE	5	010.1	572.3	LLb
DE-XILENE	2	747.8	1.023	LLL



COMPOUND NAME PEAK R.T. AREA/PPG

UNKNOLN

32.1

3.7 US



SAMPLE LIBRART 1 JUL 15 1994 9:45 J BYRD, JR. DULUTH ANGS ANALYSIS # INTERNAL TERP 30 100 PPB

COMPOUND NAME FEAK R. C. ASEAUTPH

DAKAGAN	1	33.2	10.6	us
UNKNOWN	2	მა	. 5	υb
UNKNOWN	5	150.9	1.2	US
UNKNESS	6	211.5	1.2	US
GNENCIAN	7	204.4	2. 3	U.S

LIUIT CORPOUND 10 # F.T.



STOP 8 408.8 SARPLE LIBRARY 1 JUL 15 1994 9:59 ANALTSIS # 3 J BTRD, JR.
INTERNAL TENP 30 DULUTH ANGS 5 GAIN AIR

COMPOUND NAME FRANK G. T. BREAKSON UNKNOWN 1 32.1 4.5 US



STOP 3 1000 SAMPLE LIBRARY 1 JUL 15 1934 18:45 ANALYSIS # 5 J BYRD, JR.
INTERNAL TEMP 31 DULUTH ANGS 021-017 5.5-6.0 GAIN

COMPOUND NAME TEAK P. T. AFEARTER 1 00.0 4.8 93 modern frank



STOP 3 120.0

SAMPLE LIBRARY 1 JUL 15 1994 18:55

ANALYSIS 4 6 J BYRD, JR.

INTERNAL TEMP 31 DULUTH ANGS

GAIN 5 821-012 C

CONFOUND METE FEAK B.T. ASEANSES DISKNEWS 2 12.1 7.8 VS



STOF 9 400.0 SAMPLE LIBRARY 1 JUL 15 1994 11: 7 ANALYSIS 2 J BYRD, JR. INTERNAL TEMP 32 DULUTH ANGS 021-017 14.5-15

COMPOUND NAME PEAK R.T. AREA/FFO 32.2 5.1 65 UNKNOUN



STAF" __ v 430

SAPPLE LIBRARY 1 JUL 15 1334 11:31 ANALYSIS # J BYRD, JR. 8 INTERNAL TEMP 32 DULUTH ANGS GAIN 5 193 228

SECTIONS NOTE DECK D. F. OFECUTOR

1 15 5 5 95 DINE NOTES TO THE SERVICE OF THE BENDENE TEMPERATURE Eliminate Asia 2 532 133,1 FFP FF-X LEHE

CALIBRATED PERK Z, BENZENE

SAMPLE LIBRARY 1 JUL 15 1994 11:32 AMALYSIS # 8 J BYRD, JR.
INTERNAL TEMP 32 DULUTH ANGS CAIN 5 100 PFB

COMPOUND NAME FEAR R. I. AREARSPA

LINK JULIA 2.18 3.3 65 2 38.5 100.0 FFP 3 156.7 106.6 FFP 5 313.7 117.5 FFP BENZE 12 TOLUE VE A TOPYLISENS LINE MP-XYLENE 2 337.1 217.3 FFB

* 3

STOP 9 420.0 SAMPLE LIBRART 1 JUL 15 1994 11:42 ANALYSIS # 9 J BYRD, JR.
INTERNAL TENP 32 DULUTH ANGS AIR

COMPOUND NAME FEAK B.T. APERASPY

UNKILLE 2 02.1 0.6 US



STOP 4 138.6 SAMPLE LIBRARY 1 JUL 15 1334 12:47 ANALYSIS # 10 J BYRD, JR. INTERNAL TEMP 33 DULUTH ANGS 021-026nu 2-2.5

CONFOUND NAME FERY N.T. AREASTER

there are \$ \$2.0 \$1.0 95



SAMPLE LIBRARY 1 JUL 15 1934 12:57 AMALTSIS # 11 J BTRD, JR.
INTERNAL TEMP 33 DULUTH ANGS 021-026mu 8.5-3

COMPEUND NAME TELK B. T. AREAVOLD

2 12,4 3,9 15 DINKNOUN



STOP & 430.0 SAMPLE LIBRARY 1 JUL 15 1994 13: 7 ANALYSIS # 12 J BYRD, JR. DULUTH ANGS @21-@26pull-11.5

COMPOUND MADE - DEAK R.T. BREAKPAD

UNKNOUN 2 21.9 2.2 05



SAPPLE LIBRARY 1 JUL 15 1994 10:16 ANALYSIS # 13 J BTRD, JR.
INTERNAL TENP 39 DULUTH ANGS GAIN 5 @21-@26FW16.5-12

COMPOUND HAME FERK R.T. ARESVERY

Unimedian 2 02.4 12.2 98



STOP @ 438.2 SAMPLE LIBRARY 1 JUL 15 1334 13:26 ANALYSIS # 14 J BTRD, JR.
INTERNAL TENP 34 DULUTH ANGS 100 PPB

ETAN CHUDAMOD PEAK R.T. AREAZPPM

UNKNOUN 7 31.8 6.6 05 BENZENE 20.4 111.7 FFP TOLLENE 156.5 116.2 FFP ETHYL BENZENE 312.4 170.0 FFP MP-KYLENE 3 336.8 222.6 FFB

## CALIBRATED FEAK D. DENZENE

SAMPLE LIBRARY 1 JUL 15 1234 12:28
ANALYSIS = 14 J BYRD, JR.
INTERNAL TEMP 34 DULUTH ANGS
GAIN 5 120 PP8

COMPOUND NAME PEAK R. C. OREOVERS

2 01.8 F.6 NO 6 80.4 199.9 FF 5 105.5 191.5 FFB 9 858.8 194.5 FFB IPSKNOWN BENGLNE TOLLENS ENDEAGENE

STOP 0 193.3 SAMPLE LIBRARY 1 JUL 15 1994 13:38 AMALTSIS # 15 J BYRD, JR, INTERNAL IEMP 34 DULUTH ANGS GAIN S AIR

CORPOUND NAME FEAK F.T. APEAZERS

2 02.1 0.8 0s.

# HOTOVA

שנבן פן שעון £151 0 1 30 POUFR: 44

10.0 SAMPLE я а 2.2 CAL EUENT 3 0.0 100.0 0.0 0.0 CUENT 4 EVENT 5 0.0 EVENT 6 0.0 a. a 0.0 0.0 EUENT 2 EUENT 8 0.0

8 2

430.3 SAMPLE LIBRARY 1 JUL 18 1934 10:44 AMALTSIS 3 1 J BTRD, JR.
INTERNAL TEMP 34 CULLUTH ANGS
GAIN 2 100 PPB

COMPOUND MARE REAK ROT. MREAKTOR

22.0 326.3 693 2 77.6 60.40 199 4 100.2 64.70 793 5 200.3 71.0 199 6 370.1 200.0 FFP LANCTON SENTENE TOWERE PERFURENCESS. 2 389.1 Val. - 1992 DINKHOLEN

# £ 2

STOP & 433.3 SAMPLE LIBRARY 1 JUL 18 1934 10:53 AMALTSIS # 2 J BYRD, JR. INTERNAL TEMP 34 DULUTH ANGS 10 100 PPB

. .

SEAK F.T. AFEAVERD COMPOUND MAME

5.4 75 **UNKHOWH** 31.2 2,2 95 הנוטאאות .7 6 150.8 2.0 95 7 020.5 1.7 95 8 320.7 4.8 93 UNKNOWN BHAND HA DREAM CON

10 4 F.T. CORPOUND

BENZENE 22. 2 100 0 PPS 2 150.3 100.0 FFD 3 300.5 100.0 FFD 1 105.1 100.0 FFD TOLUENE ETHYLBENZENE EF-XTLENE



STOP 8 430.8 SAMPLE LIBRART 1 JUL 18 1994 11: 2 ANALTSIS # 3 J BTRD, JR.
INTERNAL TENP 35 DULUTH ANGS
GAIN 18 AIR

CONTOUND NAME - PERS N. C. HREF. FFT.

2 3, 2 4, 3 45

START A. ....



COMPOUND HATE PEAK R.F. AREAVERN

COAMPUN 2 92,3 191.2 98



ANALTSIS # S J BYRD, JR.
INTERNAL TERP 35 DULUTH ANGS
GAIN 10 012-0168H 1.5-2

compound general class (A.1) in Halpholds

4.0 2.5 52 -2



SAMPLE LIBRARY 1 JUL 18 1994 11:54 ANALYSIS # 6 J BYRD, JR. INTERNAL TERP 35 DULUTH ANGS 017-0168H 5.5-6 10 GAIN

compound note office put. Assetting

• 90.8 12.5 A Salaro as



9100 R 402.3 SAPPLE LIBRARY 1 JUL 18 1994 12:17 ANALTSIS # 2 J BTRO, JR.
INTERNAL TEMP 35 DULUTH ANGS 18 917-0:68m 3.5-19 GAIN COMPOUND NAME PEAK R.T. AREA/PRO

2 31.1 3.5 90 UNKNOUN



COMPOUND NAME OF PROPERTY OF STATE OF S

2 01.1 0.0 .5

Libert Guile (



STOF 9 130.0 SAMPLE LIBRARY 1 JUL 18 1994 12:46 AMALTSIS 9 J BYRO, JR. INTERNAL TEMP 35 DILLUTH ANGS GAIN 10 012-0158H 5.5-6

COMPOUND HAVE PECK P. I. SPEAKPY

2 32.1 3 5 60 CHERGICAL



SAMPLE LIBRARY 1 JUL 18 1934 12:56 ANALYSIS = 10 J BTRD, JR.
INTERNAL TENP 35 DULUTH ANGS 10 100 PPB

COMPOUND NAME PEAK R.T. HEEDZERS

LINKHO'LN 2 92.3 3.6 99 2 .27.6 93.55 FVB BENTENE E LUMBENSENS 5 000.8 ZID;Z FFF

# PHOTOVAC

CALIDRATED FEAR 3.DENEERE

SAMPLE LIBRARY 1 JUL 18 1334 12:58 ANALTSIS = 10 J BYRD, JR.
INTERNAL TEMP 35 DULUTH ANGS
GAIN 10 100 PPB

AND THE PLANTS OF THE PROPERTY OF

. .... 1,749,0141, 274 212.2 FFP SERVICE SERVERSE STO T PERME I 



STOP 4 42.5 SAPPLE LIGRARY | JUL 18 1994 13: 3 ANALTSIS 4 11 JBTRD, JR. INTERNAL TEMP 35 DULUTH ANGS GAIN 12 180 FFB

CORFOUND HAME TENANTS OF LASTS 298050004

2 50.7 7.1 V0 0 75.5 071 U0 6 150.9 1.9 V1 2 566.8 1.5 7 8 011.0 4.2 U0 DOMESTIC LINE turnsperun. STREET, SELVER CONNECTOR

COPFOUND IP = F.T. LIPIT

BENZENE 22.6 190.0 PPS TOLUENE 2 159.3 109.0 FFB 3 309.8 109.0 FFB ETHTLBENZENE PP-XTLENE 4 323.0 100.0 PFF



SAMPLE LIBRARY 1 JUL 18 1934 17:20 ANALYSIS # 12 J BYRD, JR.
INTERNAL TERP 35 DULUTH ANGS GAIN 10 AIR



24.0 2 12:11 2 4 13 3 15 7 13:2 13: Elengation



COMPOUND NAME "PEAK R.T. GREAVEPH

บหลดแห 9 90.3 9.5 66



SAMPLE LIBRARY 1 JUL 18 1994 14:52 ANALYSIS # 15 J BYRD, JR.
INTERNAL TENP 39 DULUTH ANGS
GAIN 10 012-01384 S.S-6

COMPOUND MYTE PERK S. T. ORE, CONT.

6 11.5 4.5 4 5 9 4.3 6 6 2 3 Modern Com-NKN250

27/77 a 2 4 5

STOP 9 432.7 SAMPLE LIBRARY 1 JUL 18 1994 15:21 AMALTSIS # 16 J BYRO, JR.
INTERNAL TEMP 34 DULUTH ANGS
GAIN 10 012-0130H 2-2.5

COMPOURD MAKE FEBR 5.1. ASSAUCED

3 31.2 3.2 95

9 1

SAMPLE LIBRARY 1 JUL 18 1994 15:33 ANALYSIS 2 16 J BYRO, JR. INTERNAL TEMP 34 DULUTH ANGS GAIN 18 017-0130m 3.5-10

COMPOUND HAIRE - Paper Roll - Displayers

1186-182-408 ٠. .

200 A 452,0 SAMPLE LIBRART 1 JUL 18 1334 15:35
ANALTSIS = 17 J BYRD, JR,
INTERNAL TEMP 34 DULUTH ANGS
GAIN 10 A17-0130H 3.5-10

COMPOUND (MPC) Proposition (Fig. ) والمراضي فعاد

Beginstage 2 01.1 2.8

¥* = 1

TOP 0 438.8

SAMPLE LIBRART 1 JUL 18 1994 15:44

ANALYSIS 4 18 J BYRD, JR.

INTERNAL TEMP 31 OULUTH ANGS
GAIN 10 012-0138m 3.5-10

COMPOUND MADE FERR R. F. MESSEPPH

TINYPOLIS

2 31.3 4.1 03

SAMPLE LIBRARY 1 JUL 18 1334 15:53 ANALYSIS # 13 J BYRD, JR. INTERNAL TEMP 34 DULUTH ANGS GAIN 10 100 FPB

the constant 12.4 ... Same and 7.3

. .

126.1 178

CALIBRATED FEAK 3, BENTENE

SAMPLE LIBRARY | JUL 18 1994 15:54 AMALYSIS # 19 J BYRD, JR. INTERNAL TEMP 34 PULUTH ANGS GAIN 19 100 PPB

100.0 FFP Service. The End and Send on the 120. T FFP



STOP 9 400.0 SAMPLE LIBRART 1 JUL 18 1004 16: 6 ANALYSIS 2 20 J BYRD, JR, INTERNAL TEMP 35 DULUTH ANGS GAIN 18 AIR

425 Color Herry Congress (profit Cargos Ka

\$ 18.5 7.2 B

# PHOTOVAC

JUL 13 1334 2:28

FIELD: 30 POWER: 42

SAMPLE 8.0 10.0 CAL 0.0 9.0 EVENT 3 0.0 100.0 EVENT 4 0.0 0.0 0.0 0.0 EUENT 6 8.0 0.0 FUENT 2 a a a a 0.0 EVENT 8 0.0

# PHOTOVAC

JUL 13 1334 7:23

FIELD: 30 POWER: 43

SAMPLE 8.2 10.0 0.0 0.0 EUENT 3 0.0 130.0 EVENT 4 0.0 0.0 EVENT 5 0.0 EVENT 6 0.0 0.0 0.0 EVENT 2 0.0 EUENT 8

# PHOTOVAC

ž ž

STOP 3 458.2

SAMPLE LIBRARY 1 JUL 13 1934 2:32

AMALYSIS 1 J BYRD, JR.

INTERNAL TEMP 25 DULLUTH ANGS

GAIN 2 AIR

COMPOUND MANE PERK A.T. SPEAZERS

# PHOTOVAC



SAMPLE LIBRARY 1 JUL 13 1394 9:28
ANALYSIS 2 2 J BYRO, JR,
INTERNAL TEMP 32 DULUTA ANGS
GAIN 10 100 PPB

Materials of the second of the

PHOTOUAC

SAMPLE LIBRARY 1 JUL 13 1334 3:38
ANALYSIS 3 J BYRD, JR.
INTERNAL TEMP 33 DULUTH ANGS
ANN 10 100 PPB

| DESCRIPTION | PROM | R.T. | PROM |

# PHOTOVAC

בסחדסטאס וס = א.ד. בוחוד

DENZENE DENZENE DENZENE DENZENE 1 78.6 100.0 FFB 2 156.3 100.0 FFB 3 307.1 100.0 FFB 1 323.6 100.0 FFB SAMPLE LIBRARY 1 JUL 19 1994 2:S1
RNALTSIS # 4 J BYRD, JR.
INTERNAL TEMP 33 DULUTH ANGS
GAIN 10 AIR

ICHU I UVAL

PHOTOUAC

SAMPLE LIBRARY 1 JUL 13 1934 10: 3 ANALYSIS 2 S J BYRD, JR. INTERNAL TEMP 33 DULUTH ANGS GAIN 10 017-0149H 2-2.5

COMMITTED STREAM OF A CONTRACTOR

To design the second of the se

PHOTOUAC START.......

3 3

| VIDE 0 450% | ULL 19 1934 18:14 | ANALYSIS # 6 | BYRD, JR. | INTERNAL TEMP 24 | DULUTH ANGS | GAIN 10 | 412-6149H 4.5-5

COMPOUND NAME - FERK F. C. How MESS

1,0850





STOP % 450.0 SAMPLE LIBRART 1 JUL 19 1994 10:52 ANALTSIS # 8 J BTRD, JR. INTERNAL TEMP 34 DULUTH ANGS GAI^N 10 017-0128H 2-2.5

COMPOUND THE HEAVY DATE OF THE PERSON

Tagging A (A (A ) A (A



SAMPLE LIBRARY 1 JUL 13 1334 11: 2
AMALYSIS 3 J BYRD, JR.
INTERNAL TEMP 34 DULUTH ANGS
GAIN 10 012-0128H 5.5-6

CORPORAD NAME - MEMOR (S. F. - 46: 68) #3



SAMPLE LIBRART 1 JUL 13 1334 11:13
ANALYSIS # 10 J BYRD, JR.
INTERNAL TEMP 34 DULUTH ANGS
GAIN 10 190 PPB

# PHOTOVAC

CALIBRATED PERK 3, BENTENE

SAMPLE LIBRARY 1 JUL 19 1934 11:14
ANALYSIS 4 10 J BYRD, JR.
INTERNAL TEMP 34 DULUTH ANGS
GAIN 10 100 PPB

COMPTRUSO NOTE: BEING A TO HIS HOPE

# PHOTOVAC

COPPOURD ID & R.T. LINI

SAMPLE LIBRARY 1 JUL 13 1994 11:26
ANALYSIS = 11 J BYRD, JR.
INTERNAL TEMP 34 DULUTH ANGS
GAIN 10 AIR

Communication of the second se

PHOTOUAC START....

SAMPLE LIBRARY 1 JUL 19 1994 11:40
AMALYSIS 4 12 J BYRO. JR.
INTERNAL TEMP 35 DULUTH ANGS
GAIN 10 017-0120H 9.5-10

PHOTOUAC

SAMPLE LIBRART 1 JUL 19 1994 11:58
ANALTSIS 4 13 J BYRD, JR.
INTERNAL FEMP 35 DULUTH ANGS
GAIN 18 617-011BH 2-2.5

FEETBERTUNG TO STATE OF THE PROPERTY OF THE PROPE



SAMPLE LIBRARY 1 JUL 13 1934 12: 1 AMALYSIS 4 14 J BYRD. JR. INTERNAL TEMP 35 OLLUTH ANGE GAIN 18 017-01184 5.5-6

# PHOTOUAC

SAMPLE LIBRARY 1 JUL 19 1994 12:10
AMALTSIS # 15 J BYRD, JR.
INTERNAL TEMP 35 DULUTH ANGS
GAIN 10 017-0110H 9.5-10

mention of sold environment

1. S. B. M. V. + 1.

Commentation of

# PHOTOUAC



TIOP & 4/0.3 SAMPLE LIBRARY 1 JUL 19 1994 12:51 ANALYSIS 4 16 J BYRD, JR. INTERNAL TEMP 35 DULUTH ANGS GAIN 10 100 PPB

campiona positi i reak (1000 areasis).

# PHOTOVAC

CALIDRATED FEAK 3, DENZENE

40.00

SAMPLE LIBRARY ) JUL 13 1334 12:53 ANALYSIS 4 16 JERRO, JR. INTERNAL TEMP 35 DULLUM ANGS GAIN 10 100 PPB

lag.a rrp

150.1 770

# PHOTOVAC

# 2 # 3 # 6 # 3 # 5

SAMPLE LIBRART 1 JUL 19 1994 13: 4
AMALTA 12 J BYRD, JR,
INTERNAL TEMP 35
GAIN 10 10 100 PPB

Company was least that designed

 Description
 2
 0.00
 0.00
 0.00

 0
 0
 0.00
 0.00
 0.00

 0
 0
 0
 0.00
 0.00
 0.00

 0
 0
 0
 0
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00

# PHOTOVAC

COMPOUND ID # R.T. LIMIT

| 1 | 70.0 | 100.0 | FFB | 100.0 | FFB | 100.0 | FFB | 157.3 | 100.0 | FFB | 157.3 | 100.0 | FFB | 1



SAPPLE LIBRARY 1 JUL 1 21218 ANALYSIS 2 18 J BRRD, JR. INTERNAL TEMP 36 DULLIA ANGE DIR 18 AIR

200 - 400

PHOTOUAC

STOR 2 450.0

SAMPLE LIBRART 1 JUL 13 1394 13:53

ANALYSIS 2 13 J BYRD, JR.

INTERNAL TEMP 36 DULUTH ANGS

GAIN 10 017-0108Pt 4.5-5

Better Strategie and Strategie

PHOTOUAC

SAMPLE LIBRARY 1 JUL 13 1994 14:59
ANALYSIS # 20 J BYRD, JR.
INTERNAL TEMP 32 DULLITH ANGS
GAIN 10 A12-8188m 3.5-10

CONTROL NAME DEOK D.T. PRESSED



SAMPLE LIBRARY 1 JUL 19 1994 15: 9 AMACTSIS # 21 J BTRD, JR.
INTERNAL TEMP 32 DULUTH ANGS 10 017-0178H 1.5-2

title frame more organization organiza-

25843229

2 2..

# STPRT ... a j 2 5 # 4

CICH 4 450.2 SANPLE LIBRARY 1 JUL 13 1994 15:18 ANALYSIS 4 22 J BYRO. JR. INTERNAL TEMP 32 DULUTH ANGS GAIN 18 012-0128H 5.5-6

COMMUNICATION PLAN PLY APENIAPP

Linearithet

31.2 4.5 95 2 2 26.0 2.6 08

\$1.007 4 # 2

SAMPLE LIBRARY 1 JUL 12 1934 15:40
ANALYSIS 4 23 J BYRD, JR.
INTERNAL TEMP 32 DULUTH ANGS
GAIN 10 017-0120H 3.5-10

3.3 (286)

START_ # 4 6

SAMPLE LIBRARY 1 JUL 19 1994 15:54 ANALTSIS # 24 J BYRD, JR.
INTERNAL TEMP 32 DULUTH ANGS
GAIN 10 100 PPB

COMPOUND HOME PEAK R. C. SCLANDED 55335 34 DIMPHONIA TO ACCUSE TO TO ACCUSE TO THE PROPERTY OF THE PROPER 3 520.3 1.9 75

CALIBRATED FEAK 3. DERZENE

SAMPLE LIBRARY 1 JUL 13 1334 15:58 ANALYSIS # 24 J BYRD, JR. INTERNAL TENN 3> DULUTH NOS MIAD 10 100 668

Anni Production 1 17.2 199.0 FFP 6 180.3 191.6 FFP 7 198.4 Main 1 126.5 FFP 3 181.1 126.5 FFP 3 181.1 2 16. Laterage Co. SELVELLE ISTORYA i basserua Bakings Bakings Bakings



SAMPLE LIBRARY 1 JUL 13 1999 16: 3 ANALTSIS 2 25 J BTRD, JR.
INTERNAL TENP 32 DULUTH ANGS GAIN 10 AIR

• ŧδ a 19

SAMPLE LIBRARY 1 JUL 13 1334 16:18 ANALYSIS # 26 J BYRD, JR.
INTERNAL TEMP 32 DULUTH ANGS
GAIN 10 100 FFB

24.50 7 14 113.2 FFP . . . . . . 130,3 rp 12 50 32 12 5

CALIBRATED FERK 4. DENTERE

SAMPLE LIBRARY 1 JUL 13 1994 16:19 ANALYSIS # 26 J BYRD, JR. INTERNAL TEMP 37 DULUTH ANGS GAIN 10 100 PPB

well-to the time. 5 3 3 5 5 5 5 100.0 550 Andrews Section 1995 Andrews Section 1995 Andrews Section 1995 101.6 770 160,5 FFF

JUL 20 1334 10:55

FIELD: 38 POUFR: 43

SATIPLE	8.4	10.0
CAL	0.0	0.0
EVENT 3	0.0	130.0
EUENT 4	2.6	0.0
EUENT 5	0.0	9.0
EUENT 6	0.0	2.2
EUENT 2	0.0	9.9
FUENT 8	0.0	0.0

STORT д **1** 5

STOF # 950.2 SAMPLE LIBRART 1 JUL 20 1994 11: 9 ANALYSIS # 1 J BYRD, JR. INTERNAL TERP 23 DULUTH ANGS 668 GAIN 19

date a salesse of the composition of

. . . .

A Section . ...

gar rayerak

10 # F.T. CONFOUND

53.2 100.0 FFB · BENZENE 1 2 163.3 100.0 PFP TOLUENE E-BENZENE 3 328.3 108.9 PF5 4 343.1 108.8 PF5 PF-XTLENE



SAMPLE LIBRARY 1 JUL 20 1994 11:21 ANALYSIS # 2 J BTRD, JR. INTERNAL TEMP 31 DULUTH ANGS 10 AIR

donas o sea com como en el enco 



\$708 0 450.0 SAMPLE LIBRART 1 JUL 20 1994 11:46 ANALYSIS # 3 J BYRD, JR.
INTERNAL TEMP 32 DULUTH ANGS
GAIN 18 917-9188H 2-2.5

durational rate meak sur, meanwho

2 22.1 5.2 %4 5 159.3 59.7 m/3 3 286.3 597.4 m/3 1 1/2 1. 571.1 39.3 m/2 CNESCON Track Car पुष्पात्रस्थाव 1---

2 **a** 7

SAMPLE LIBRART 1 JUL 20 1934 11:52 ANALTSIS 4 J BYRD, JR. INTERNAL TEMP 33 DULUTH ANGS GAIN 10 012-0198H 2-2.5

556 C. 1 1994 V114 . g -- ·



SAFPLE LIBRARY 1 JUL 20 1994 12:25 ANNLTSIS 4 5 J BYRD, JR. INTERNAL TENP 33 DULUTH ANGS GAIN 10 617-0188H 9.5-10

COMPOUND NAME - PERK E.T. 06440950

2 31.6 4.1 % 3 744.5 313.8 ptg Line (scholare) taskjungt:



SAMPLE LIBRART 1 JUL 28 1934 12:45
AMALYSIS = 7 J BYRD, JR.
INTERNAL TEMP 39
DULUTH ANGS
GAIN 18 160 PPB

44.844 B. 1449

10 m

151.9 FFB

CALIBRATED PEAK 1. PENTENE

SAMPLE LIBRART 1 JUL 28 1994 12:46
ANALTSIS # 7 J BYRP, JR.
INTERNAL TEMP 34 DULUTH ANGS
GAIN 188 PPB

199 (\$1.19) 55 (5 1 C.15 (5 1

 $Emp(h) \leq g \cdot g$ 

100.0 [[5 . .

163.4 555

71 5 3 TO 9 100.00 SAMPLE LIBRART 1 JUL 20 1934 10: 3 ANALTSIS # 8 J BYRD, JR. INTERNAL TEMP 35 DULUTH ANGS GAIN 10 100 PPB

 $CG(\mathbb{R}^n) = \mathbb{R}^n - \mathbb{R}^n$ Communication of the communica

CALIBRATED PEAK 3, BENZENE

SAMPLE LIBRARY 1 JUL 20 1994 13: 4 ANALYSIS & 8 J BYRO, JR.
INTERNAL TENP 35 DULLUTH ANGS
GAIN 10 100 PPB

100.0 555

165.3 FFB



SAMPLE LIBRARY 1 JUL 20 1994 13:15 ANALYSIS # ANALYSIS # 3 J BYRD. JR.
INTERNAL TEMP 3S DULUTH ANGS
GAIN 10 100 FPB

inans (s. 15) Martinino Salantinino Mantinino Salantinino Salantinino

CORFOLINA 19 a R.T. Linte

BENZENE TOLUENE E-BENZENE באש שלע באם

tiving plants of the silver

53,2 100.0 FFD 2 165.1 100.0 FFF

3 325.1 100.0 FFD 1 318.8 100.0 FFB ۾ ڇ

SAMPLE LIBRARY | JUL 20 1334 13:26 ANALTSIS # 10 J BYRO, JR. INTERNAL TEMP 75 DULUTH ANGS GAIN 10 AIR



SAMPLE LIBRARY | JUL 20 | 1934 | 13:45 AMALYSIS # 11 J BYRD, JR, IMTERNAL TEMP 36 DULUTH ANGS GAIN 10 017-0198H | 1.5-2

. 41.14

tter: **z** 1 # 7 **1** 5

SATPLE LIBRARY 1 JUL 20 1994 14:29
ANALYSIS # 12 J BYRD, JR,
INTERNAL TETP 36 DULUTH ANGS
GAIN 10 012-01981 5.0-6

contents on some of their court of the one



SAMPLE LIBRARY 1 JUL 20 1994 14:33 AMALYSIS 2 13 J BYRD, JR. INTERNAL TEMP 36 DULUTH ANGS GAIN 10 017-0198H 3.5-10

> · . : .

# PHOTOUAC

SAMPLE LIBRART 1 JUL 20 1994 14:56 ANALYSIS # 14 J BYRD, JR. INTERNAL TEMP 32 DULUTH ANGS GAIN 10 017-0208H 2-2.5

ength of words of the order of the control of the c

# PHOTOUAC

SAMPLE LIBRART 1 JUL 20 1994 15:20 ANALYSIS 4 15 J BYRD, JR. INTERNAL TEMP 37 DULUTH ANGS GAIN 10 917-0208H S.S-6

COMPOUNT NAME OF SUBJECT OF DESCRIPTION OF THE PROPERTY OF THE

PHOTOVAC



SAPPLE LIBRARY 1 JUL 20 1934 15:30 ANALYSIS = 16 J BYRD, JR. JULUH ANGS LINERNAL TEMP 32 DULUH ANGS 100 PPB

150.1 CCP

# PHOTOVAC

CALIPRATED PEAK 3, BENTENE

SAMPLE LIBRARY 1 JUL 20 1934 15:32 AMALYSIS # 16 J BYRD, JR. INTERNAL TEMP 37 DULUTH ANGS GAIN 10 PPB

100.0 FFB



SAMPLE LIBRARY 1 JUL 20 1994 15:42
ANALTSIS # 17 J BYRD, JR.
INTERNAL TEMP 32 DULUTH ANGS
GAIN 10 AIR

regions of their factors of the State of the

PHOTOUAC

SAMPLE LIBRARY 1 JUL 20 1994 15:52 AMALTSIS 4 18 J BYRD, JR. INTERNAL TEMP 37 DULUTH ANGS GAIN 10 817-0208M 3.5-10

PHOTOVAC



SAMPLE LIBRARY 1 JUL 20 1994 16: 2
AMALTSIS 2 19 J BYRD, JR.
INTERNAL TEMP 37 DULUTH ANGS
GAIN 10 PPB

CHLIPRATED FERK 3. BENTEME

SAMPLE LIBRART 1 JUL 28 1334 16: S
ANALTSIS 2 13 J BYRD, JR.
INTERNAL TEMP 3> DULUTH ANGS
GAIN 10 100 PPB



SAMPLE LIBRART 1 JUL 20 1994 16:19
ANALTSIS # 20 J BYRD, JR.
INTERNAL TEMP 32 DULUTH ANGS
GAIN 10 AIR

design of the property of the contraction of the co

JUL 23 1334 10:23

FIELD: 30 POWER: 43

SAMPLE 10.0 CAL 0.0 0.0 EUENT 3 a a 130.0 EVENT 4 0.0 0.0 EUENT 5 0.4 EVENT 6 a a a.a EVENT 2 0.0 9.0 FUENT &

## CORFOUND ID # F.T.

# * \$ 6

932 C ST TP 13 SAMPLE LIBRARY 1 JUL 23 1994 11: 1 ANALYSIS # 1 J BYRD, JR.
INTERNAL TENP 31 DULUTH ANGS
GAIN 10 100 PPB

מסורים אורד בברה מוד. האצמיייים galenge te general galenge te general galenge te general . 4n f 1272 15

COPPOUND

BENZENE 50.6 100.0 PFB 2 153.5 100.0 PPB 3 312.5 100.0 PPB 1 335.0 100.0 PPB TOLLIENE E-BENSENE PF-XYLENE

# MHUIUVAC



SAMPLE LIBRARY 1 JUL 23 1994 11:13 AMALTSIS 2 2 J BYRD, JR. INTERNAL TEMP 32 DULUTH ANGS 10 BOSTES AIR GAIN



SAMPLE LIBRART 1 JUL 23 1994 11:23
ANALTSIS # 3 J BYRD, JR.
INTERNAL TEMP 33 DULUTH ANGS
GAIN 10 921-009 ML

with the weather than the site of



SAMPLE LIBRART 1 JUL 23 1994 11:32 ANALYSIS # 4 J BYRD, JR.
INTERNAL TEMP 33 DULUTH ANGS 10 221-812 nu

PROPERTY FOR A CONTRACT OF THE PROPERTY OF .. .. 200 00.25

# EHU I UVAL I



SAMPLE LIBRART 1 JUL 23 1934 11:42
ANALYSIS # S J BYRD, JR.
INTERNAL TEMP 33 DULUTH ANGS
GAIN 10 021-014 MU



CAMPLE LIBRART 1 JUL 23 1334 11:52
ANALYSIS # 6 J BYRD, JR,
INTERNAL TEMP 33 DULUTH ANGS
GAIN 18 921-026 Ru

facedess seek value



SAMPLE LIBRARY 1 JUL 23 1994 12: 2
ANALYSIS # 7 J BYRD, JR.
INTERNAL TEMP 34 DULUTH ANGS
GAIN 10 018-0068H 2.5

REPORTURED HOUSE THE BOOK OF THE FOREST

CPC 196 24 (44)



197.1 775

CALIDAGIED LEGE 3. DELIGENE

t vi i

SAMPLE LIBRARY 1 JUL 23 1339 12:14
AMALYSIS # B J BYRD, JR.
INTERNAL TEMP 34
GAIN 10 100 PPB

100.0 FFP

PHOTOVAC

SAMPLE LIBRARY 1 JUL 23 1994 12:26 ANALYSIS # 9 J BYRD, JR. INTERNAL TEMP 34 DULUTH ANGS GAIN 10 100 PPP

1 כמורסטואס ID # R.T. rinii

BENZENE TOLUENE E-BENSENE

באזעבהב

50,5 100.0 PPB

PF-XTLENE

1 FM.6 100.0 FFB 2 155.7 100.0 FFB 3 315.1 100.0 FFB 1 335.6 100.0 FFB 5 335.3 100.0 FFB

152 +

SAMPLE LIBRART 1 JUL 23 1994 12:32 ANALYSIS = 10 J 57KD, JR. INTERNAL TEMP 34 DULUTH ANGS GAIN 10 AIR

THERE IS A SECTION OF THE en op so Standard og standard

SAMPLE LIBRART 1 JUL 23 1334 12:47 AMALTSIS # 11 J BYRD, JR. INTERMAL TEMP 34 DULUTH AMGS BAIN 18 088-08681 1.7

SATPLE LIBRART 1 JUL 23 1994 12:52 ANALYSIS # 12 J BYRD, JR. INTERNAL TERP 34 DULUTH ANGS GAIN 18 917-8108H1.5-2.5

the some open ones, who 9 73.8 7.4 L 7 75.2 20.0 mag Berne Barn



SAMPLE LIBRARY 1 JUL 23 1994 13: 6
ANALYSIS # 13 J BYRD, JR.
INTERNAL TEMP 34 DULUTH ANGS
GAIN 10 G18-0078H 2.5

. . . . .

# PHOTOVAC

I COMPOUND ID # R.T. Limi

| BENTERE | 1 | 00.6 | 100.8 | PPB | TOLUENE | 2 | 153.7 | 100.0 | PPB | E-BENTERE | 3 | 313.1 | 100.0 | PTB | T-XYLENE | 1 | 325.6 | 100.0 | PTB | T-XYLENE | 5 | 325.3 | 100.0 | PTB | T-XYLENE | 5 | 325.3 | 100.0 | PTB | T-XYLENE | 5 | 325.3 | 100.0 | PTB | T-XYLENE | 5 | 325.3 | 100.0 | PTB | T-XYLENE | 5 | 325.3 | 100.0 | PTB | T-XYLENE | 5 | 325.3 | 100.0 | PTB | T-XYLENE | 5 | 325.3 | 100.0 | PTB | T-XYLENE | 5 | 325.3 | 100.0 | PTB | T-XYLENE | 5 | 325.3 | 100.0 | PTB | T-XYLENE | 5 | 325.3 | 300.0 | PTB | T-XYLENE | 5 | 325.3 | 300.0 | PTB | T-XYLENE | 5 | 325.3 | 300.0 | PTB | T-XYLENE | 5 | 325.3 | 300.0 | PTB | T-XYLENE | 5 | 325.3 | 300.0 | PTB | T-XYLENE | 5 | 325.3 | 300.0 | PTB | T-XYLENE | 5 | 325.3 | 300.0 | PTB | T-XYLENE | 5 | 325.3 | 300.0 | PTB | T-XYLENE | 5 | 325.3 | 300.0 | PTB | T-XYLENE | 5 | 325.3 | 300.0 | PTB | T-XYLENE | 5 | 325.3 | 300.0 | PTB | T-XYLENE | 5 | 325.3 | 300.0 | PTB | T-XYLENE | 5 | 325.3 | 300.0 | PTB | T-XYLENE | 5 | 325.3 | 300.0 | PTB | T-XYLENE | 5 | 325.3 | 300.0 | PTB | T-XYLENE | 5 | 325.3 | 300.0 | PTB | T-XYLENE | 5 | 325.3 | 300.0 | PTB | T-XYLENE | 5 | 325.3 | 300.0 | PTB | T-XYLENE | 5 | 325.3 | 300.0 | 300.0 | T-XYLENE | 5 | 325.3 | 300.0 | 300.0 | T-XYLENE | 5 | 325.3 | 300.0 | 300.0 | 300.0 | 300.0 | 300.0 | 300.0 | 300.0 | 300.0 | 300.0 | 300.0 | 300.0 | 300.0 | 300.0 | 300.0 | 300.0 | 300.0 | 300.0 | 300.0 | 300.0 | 300.0 | 300.0 | 300.0 | 300.0 | 300.0 | 300.0 | 300.0 | 3

PHOTOVAC

confound to a R.T. Limit



SAMPLE LIBRARY 1 JUL 23 1994 15:37 ANALYSIS = 14 J BYRD, JR. INTERNAL TEMP 35 OULUTH ANGS GAIN 10 PPB

# PHOTOVAC

1 COMPOUND ID # R.T. LIMIT

| BENZENE | 1 | 81.6 | 100.0 | PFB | 100.0 |

# PHOTOVAC



SAMPLE LIBRARY 1 JUL 23 1234 15:50
ANALYSIS # 15 J BYRD, JR.
INTERNAL TEMP 35 DULUTH ANGS
GAIN 10 AIR

यक्षण क्षेत्र अस्तर्भु । १६५५ । अस्तर्भ अस्त

PHOTOUACI

SAMPLE LIBRARY 1 JUL 23 1994 16: 0
ANALYSIS 2 16 J BYRD, JR.
INTERNAL TEMP 36 OULUTH ANGS
GAIN 10 021-004SD



SAMPLE LIBRARY 1 JUL 23 1994 16:11
ANALYSIS = 12 J BYRD, JR.
INTERNAL TEMP 36 DULUTH ANGS
GAIN 19 021-00450

PHOTOUAC

SATTLE LIBRART 1 JUL 23 1334 16:21 ANALTSIS 2 18 J BYRO, JR. INTERNAL TETP 35 DULUTH ANGS GAIN 10 921-90650

State 1.1



SAMPLE LIBRART 1 JUL 23 1994 16:31 ANALYSIS # 19 J BYRD, JR. INTERNAL TEMP 35 OULUTH ANGS GAIN 10 021-00750

я 1 5 # p

SAMPLE LIBRARY 1 JUL 23 1334 16:41 AMALYSIS # 20 1 BYRD, JR.
INTERNAL TEMP 35 DULUTH ANGS 018-0028m .8-1.3

Day FIRE Donates Carlot Contract State Str to make the 211.3 FFP 653.6 FFP 529.8 FFP 4 May and 

PHOTOVA



STO, R #950.0 SAMPLE LIBRARY 1 JUL 23 1994 17: S ANALYSIS # 22 J BYRO, JR. INTERNAL TEMP 35 DULUTH ANGS BAIN 2 1 PPM

COMPUME PARES FROM FOR ARREST

Line of the second Alex 150 

1

CONFOURD ID # R.T. LISTI

BENZENE 81.2 1.888 PPH TOLUENE 2 161.7 1.000 PPN 3 317.0 1.000 PPN E-BENSENE TP-XYLENE 1 319.1 1.990 PPR



SAMPLE LIBRARY 1 JUL 23 1994 17:17 ANALYSIS # 23 J BYRD, JR.
INTERNAL TEMP 36 DULUTH ANGS
GAIN 2 AIR ANALYSIS #

COMPOUND HATE FERN D. T. PREAKEY

298.87348 . 26.8 175.3 mili

SAPPLE LIBRARY 1 JUL 23 1554 17:27 ANALYSIS # 24 J BYRO, JR.
INTERNAL TEMP 35 DULUTH ANGS
GAIN 2 018-002840.8-1.3 GAIN

terbrish beta 12266 But 1929 to The Control of the Co Add the



SAMPLE LIBRARY 1 JUL 23 1994 17:37 ANALYSIS # J BYRD, JR. DULUTH ANGS 25 INTERNAL TEMP 35 018-0078n 2.5 GAIN

COMPOLING OFFE PERK P. C. GOLFAFFE Samuel Land 92.5 93.9 2 2 # 02.6 00.0 m2
# 09.6 00.0 m2
# 09.6 0.0 m3
Communities Communities Billip Brain Billip Brain GN AL GR 08 1 inde 19 1 inde 1.44 PRESENTA NO POLITICA NO POLITICA 10 3,221 FFP Tomas se





SAMPLE LIBRARY 1 JUL 23 1994 17:50 ANALTSIS # 26 J BYRD, JR.
INTERNAL TENP 36 DULUTH ANDS
GAIN 2 1 PPN BTEX

วันสุดใหม่นางสู่ก่อย และหว่าง และ คริกา

2000 1.070 FFR 2000 1.070 FFR 2000 1.070 FFR 2000 1.070 1.070 FFR 2000 2.080 FFR Section 2 0207264 17.11.27% 1-51/4ENE 18: N-118E

CALIBRATED FEAR 2, BENTERE

SAMPLE LIBRARY 1 JUL 23 1994 17:52
AMPLYSIS 4 26 J BYRD, JR.
INTERNAL TEMP 35 CULUTH ANGS
GAIN 2 1 PPM BTEX

euro du que oblivo auto Mervitt

HOTOUA



SATIPLE LIBRARY 1 JUL 23 1954 18: 4
ANALYSIS 2 27 J BYRD, JR.
INTERNAL TENP 36 DULUTH ANGS
GAIN 2 018-0078H 2.5 .w.v., atraktik

in programme



CAMPLE LIBRARY 1 JUL 23 1994 18:18 AMALYSIS = 28 J BYRD, JR.
INTERNAL TENP 36 DULUTH ANGS
GAIN 2 918-9928-0.8-1.3

COMPLETE BOOK PERK FOR SERVICE DING NEEDER BUI De Faltes De Colore E - 107 Des 



SAMPLE LIBRART 1 JUL 23 1334 18:30
ANALYSIS 2 23 J BYRD, JR.
INTERNAL TEMP 36 DULUTH ANGS
GAIN 2 018-2078H 2,5

se was the company and all



SAMPLE LIBRARY 1 JUL 23 1939 18:43
AMMITSIS 8 38 J BYRD, JR.
INTERNAL TEMP 35 DULUTH ANGS
GAIN 2 1 PPM

Conductions of the engineers

1 114 1115 His 5 117 11 14 14 18 11 1 25 1 18 1 5 5 6 8 8 11 21 200 #2.492_32 10000 5-2000-2.002

ו. 696 דרף

CALIBRATED PEAK 2. DENSENE

SAMPLE LIBRARY 1 JUL 23 1994 18:45 ANALYSIS 4 30 J BYRD, JR.
INTERNAL TENP 35 OULUTH ANGS
GAIN 2 1 PPN

1.260 777

**4** 1

SAMPLE LIBRARY 1 JUL 23 1994 18157 AMALTSIS # 31 J BYRD, JR. INTERNAL TEMP 35 DULUTH ANGS GAIN 2 AIR

Note that the second of the second

כמתפטעתם 10 # R.T. LINIT



SAMPLE LIBRART 1 JUL 23 1994 19: 8
ANALYSIS 4 32 J BYRD, JR.
INTERNAL TEMP 35 DULUTH ANGS 10 100 668

CORPOLING 10 a R.T.

BENZENE \$1.7 100.0 FFF TOLUENE 2 162,1 100,0 PPB 3 318,2 100,0 PPB E-BENZENE DP-XTLENE 1 341.6 100.0 PPB D-XYLENE 902.5 100.0 PFB

**1** 

7

The distance of the second

SAMPLE LIBRARY 1 JUL 23 1994 19:19
ANALYSIS # 33 J BYRD, JR.
INTERNAL TEMP 35 DULUTH ANGS
GAIN 10 AIR

una. p相性 in text in the negative

**z** 1 . .

SAMPLE LIBRARY 1 JUL 23 1339 13:23 AMALYSIS # 39 J BYRO, JR. INTERNAL TEMP 36 DULUTH ANGS GAIN 19 916-9928HB.6-1.3

# 10

734.6 FFP 956.0 PFB . 235.2 555

I 1 # 9 # 5 ر ء n c E 10

SAMPLE LIBRARY 1 JUL 23 1334 13:42
AMALYSIS 2 35 J BYRD, JR.
INTERNAL TEMP 36 DULUTH ANGS
GAIN 10 018-0020HD.8-1.3

and the second section of the second 
2 - 70 - 10 4 5 4 5 1 - 244 - 4 4 5 4 5 1 - 25 - 10 1 5 6 156,3 FFp 153,6 FFp 136,8 FFp

# PHOTOUAC



SAMPLE LIBRARY 1 JUL 23 1994 13:S4
ANALTSIS # 36 J PYRO, JR.
INTERNAL TEMP 36 OULUTH ANGS
GAIN 10 100 PP8

120.2 275

# PHOTOUAC

CALIPRATED PERK 3, DENZERE

SAMPLE LIBRARY 1 JUL 23 1934 19:56
AMALTSIS 4 36 J BYRD, JR.
INTERNAL TEMP 36 DULUTH ANGS
GAIN 10 100 PPB

100.0 770

107.9 770

# PHOTOVAC.



SAMPLE LIBRARY 1 JUL 23 1934 20: 7
ANALYSIS = 37 J PTRD, JR.
INTERNAL TEMP 36 DULUTH ANGS
GAIN 10 AIR

and the state of the state of

ANALVEIC #20	10S+ GC FUNC	TION ANALYSIS REPORT
0 2 4	6 8 10 (x 10 MV)	TIME PRINTED: MAY 16,95 15:38 SAMPLE TIME: MAY 16,95 15:30
35. 2 7. 3 4 5 71. 6	8	METHOD  SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV  ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C
10		AMB TEMP 32 C MAX GAIN 1000
142		ANALYSIS TIME 500.0 SEC  PEAK REPORT  PK COMPOUND NAME AREA/CONC R.T.
178		1 UNKNOWN       0.050 MVS       16.6         2 UNKNOWN       8.773 MVS       18.7         3 UNKNOWN       32.01 MVS       20.3         4 UNKNOWN       22.56 MVS       26.8
214		5 UNKNOWN 12.13 MVS 32.0 6 UNKNOWN 25.04 MVS 36.3 7 UNKNOWN 9.629 MVS 51.0 8 UNKNOWN 201.0 MVS 64.2
250		9 UNKNOWN 0.299 MVS 80.0 10 UNKNOWN 130.8 MVS 126.1 11 UNKNOWN 0.086 MVS 230.2
285 13		12 UNKNOWN 79.92 MVS 258.4 13 UNKNOWN 58.90 MVS 277.8 14 UNKNOWN 9.116 MVS 324.5
321		
14		
357		
392	· · · · · · · · · · · · · · · · · · ·	NOTES JOE BYRD, JR. DULUTH ANGB
428		100 PPB BTEX
464	·	

G.C. Ready Analysis No Pk No Name	105+ 60 20 R Con	Function un at - Ma c/Area	May 16, y 16,95 Alarm	95 15:46 15:30 - Ret.Time
S Unknown 7 Unknown 8 benzene 9 Unknown 10 toluens 11 Unknown 12 ethylbenzer 13 m,p-xylene 14 o-xylene - Detected 14 p	0. 10 0. 10 20 10 Peaks. Use	.94 mUSSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO MUSCOBO M	-Mo- -Mo- -Mo- -Mo- -Mo- -Mo- -Mo- -Mo-	36.3 sec 54.2 sec 64.2 sec 1250.4 sec 1250.5 sec 365.5 sec 365.5 sec
59 (mU)	8			219.5 WV
44				
29				
14 2 4		10 1	12	
-1 <u> </u>	7 1 3		11, 10	······································
9 24 4	48 79	126 189	266	367 500

	Αn	AL	/SIS	#2	21	10	os+	GC	Func	TION ANALYSIS REPORT
	0	1_	2	•	4	6 . ()	X	8 100	10 MV)	TIME PRINTED: MAY 16,95 15:56 SAMPLE TIME: MAY 16,95 15:48 METHOD
	35				2				,	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC
	71	) 				· 			<del></del> 4	MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
				,						WINDOW PERCENT 10.0 %  DET FLOW 12 ML/MIN  B/F FLOW 12 ML/MIN
	10	7								AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C
	142		 	÷ 5	5				•	MAX GAIN 1000 ANALYSIS TIME 500.0 SEC PEAK REPORT
	17	'8		•	,	•				PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.060 MVS 16.6 2 UNKNOWN 2.379 VSEC 20.4 3 UNKNOWN 30.14 MVS 43.2
	2]	.4								4 BENZENE 2.803 PPM 64.6 5 TOLUENE 2.327 PPM 126.5 6 ETHYLBENZENE 2.108 PPM 259.4 7 M,P-XYLENE 3.727 PPM 278.4
	25	0		:						8 O-XYLENE 3.723 PPM 325.8
<i>e</i> e`	1 '	/	6							'   
	28	35)	.7			٠		•		
١	32	21			•					
		8	ı					•		
	3	7								
ı	39	32	•							NOTES IN THE PROPERTY OF THE P
	42	Ω						•		JOE BYRD, JR. DULUTH ANGB 1 PPM BTEX
	+4	0		,						
	46	4								

	G.C. Reac Analysis Ac Man	No 21	188 <u>-</u> G	C Fun Run a nc Ar	etico ea	75. 1 49. 13. 4 41. 3. 1	6,95 1 5 15:4 R.T.T	6:8: 8 - ime
	Unknown Unknown Unknown benzene toluene ethylber m.p-xyle o-xylene	tine	The first on the stirl produced for the stirl		MUS WSGC mUS PPM PPM PPM PPM PPM	and of the control of	64.26 12.46.20 12.46.20 12.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46.36 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 13.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46 14.46	
	Detected	8 peal	s.				C 505	secl
599	(mU)		2				212.5	ul.
749								
499								
249	Ä			<u>::</u> .		s		
Į.	1 1	3 48		, ,	·	ر ميا ^{ران} او	7 8	······································
1	9 24	45	7.5	126	18	7 186	367	599

•

-

Analysis #22	10S+ GC	FUNCT	TION ANALYSIS REPORT
0 2 4	6 8 (x 100	10 mV)	TIME PRINTED: MAY 16,95 16:11 SAMPLE TIME: MAY 16,95 16:02 METHOD
35 2			SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC
7I 6 7			MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
107		8	DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN
142		9	OVEN TEMP 40 C   AMB TEMP 32 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
		•	PEAK REPORT
178   10			PK COMPOUND NAME         AREA/CONC         R.T.           1 UNKNOWN         0.060 MVS         16.7           2 UNKNOWN         7.290 MVS         18.9           3 UNKNOWN         53.09 MVS         20.6
214	•		4       UNKNOWN       36.55 MVS       27.0         5       UNKNOWN       20.70 MVS       31.9         6       UNKNOWN       38.02 MVS       36.4         7       UNKNOWN       11.98 MVS       50.9
250			8       BENZENE       3.009 PPM       65.2         9       TOLUENE       6.233 PPM       127.7         10       UNKNOWN       18.33 MVS       179.2         11       UNKNOWN       2.078 MVS       223.2
285			12 ETHYLBENZENE 5.917 PPM 260.2 13 M,P-XYLENE 11.75 PPM 278.4 14 O-XYLENE 3.681 PPM 325.3
321			
357		٠	
392			NOTES JOE BYRD, JR. DULUTH ANGB
428			10 PPM BTEX
4 <del>6</del> 4			

ANA	LVCIC	#23	108+	GC FUN	CTION ANALYSIS REPORT
0	1	2	3 (x 10	4 5 000 uV) ——	TIME PRINTED: MAY 16,95 16:26 SAMPLE TIME: MAY 16,95 16:17 METHOD
35				2 3	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC
7±	/5 = 6		4		MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
7					WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN
107					AUX FLOW 0 ML/MIN OVEN TEMP 40 C
8 142	9			•	MAX GAIN 1000 Analysis Time 500.0 sec
178					PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.040 MVS 16.5 2 UNKNOWN 6.238 MVS 19.1 3 UNKNOWN 85.06 MVS 20.5
214					4 UNKNOWN 0.599 MVS 26.9 5 UNKNOWN 3.556 MVS 51.5 6 BENZENE 1.098 PPB 64.5
10 250					7 UNKNOWN 1.293 MVS 80.6 8 TOLUENE 0.887 PPB 126.9 9 UNKNOWN 0.162 MVS 129.3 10 UNKNOWN 0.658 MVS 229.8
		:			11 ETHYLBENZENE 6.002 PPB 261.0 12 M,P-XYLENE 8.717 PPB 278.4
285	12				
321					
357		. ,	•		
392			•		NOTES JOE BYRD, JR.
428					DULUTH ANGB AIR BLANK
464					

ANALYSIS #26	10S+ GC FUNC	TION ANALYSIS REPORT
0 4 8	12 16 20	TIME PRINTED: MAY 16,95 17:03
	(x 1000 UV)	SAMPLE TIME: MAY 16,95 16:55  METHOD
35 2		SLOPE UP 0.500 MV/SEC
	3	SLOPE DOWN 1.500 MV/SEC
4	•	MIN AREA 0.000 mVSec MIN HEIGHT 0.000 mV
71 6		ANALYSIS DELAY 0.00 SEC
		WINDOW PERCENT 10.0 %
77		DET FLOW 12 ML/MIN
107		B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN
		OVEN TEMP 40 C
,		AMB TEMP 31 C
142 8		MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
		PEAK REPORT
		PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 1.085 MVS 17.5
178		2 UNKNOWN 12.87 MVS 19.0
	•	3 UNKNOWN 137.5 MVS 21.7
		4 UNKNOWN 2.157 MVS 27.5 5 UNKNOWN 3.787 MVS 51.1
214		5 UNKNOWN 3.787 MVS 51.1 6 BENZENE 0.759 PPB 64.9
	• • •	7 UNKNOWN 1.469 MVS 81.4
0		8 TOLUENE 2.673 PPB 128.0
9 250		9 UNKNOWN 1.304 MVS 233.2 10 ETHYLBENZENE 0.135 PPB 264.2
	•	11 UNKNOWN 0.546 MVS 385.6
10		
285		
321		
357		
		7
	•	
392 11		NOTES
		JOE BYRD, JR. DULUTH ANGB
		021-026вн
428		8.0-10.0 10g
464		

ANAL	ve i e	#27	10	S+ GC	FUNC	TION ANALYSIS REPORT
0	4	8	12 (x	16 1000	20 (Vu (	TIME PRINTED: MAY 16,95 17:15 SAMPLE TIME: MAY 16,95 17:07
<u>-</u> 1	·					METHOD
35	مرسمر	<del></del>	<u> </u>			SLOPE UP 0.500 MV/SEC
	gan da		3			SLOPE DOWN 1.500 MV/SEC
<	_	. 4				MIN AREA 0.000 MVSEC
	5					MIN HEIGHT 0.000 MV
71/	6					ANALYSIS DELAY 0.0 SEC
						WINDOW PERCENT 10.0 %
8 (						DET FLOW 12 ML/MIN
107						B/F FLOW 12 ML/MIN
107					,	AUX FLOW 0 ML/MIN
						OVEN TEMP 40 C AMB TEMP 31 C
C		•				
1/12						MAX GAIN 1000
142						ANALYSIS TIME 500.0 SEC PEAK REPORT
						PK COMPOUND NAME AREA/CONC R.T.
			,			1 UNKNOWN 1.713 MVS 17.5
178						
110	•					2 UNKNOWN 13.31 MVS 19.0 3 UNKNOWN 141.2 MVS 21.7
						4 UNKNOWN 2.372 MVS 27.4
						5 UNKNOWN 0.272 MVS 34.9
214						6 UNKNOWN 3.521 MVS 50.9
<b>-                                   </b>	•	•				7 BENZENE 0.566 PPB 65.3
						8 UNKNOWN 1.230 MVS 81.0
		•	4			9 TOLUENE 1.706 PPB 127.8
250	10					10 ETHYLBENZENE 3.612 PPB 236.2
	•			•	•	11 M,P-XYLENE 5.176 PPB 279.4
			•			
285	11		,			
				,		
		•		•		
321						
					•	
			•			
357						
700						
392						NOTES
		•				JOE BYRD, JR.
				•		DULUTH ANGB
11.00						021-026вн
428		•		,		4.0- 6.0 10g
464						
, ,	•					

ANAL	.VSIS	#29	10S+	GC	FUNC	TION ANALYSIS REPORT
0 1	2	4	6 (x	8 10	10 mV)	Time Printed: May 16,95 17:39 Sample Time: May 16,95 17:31
35,7	2 3 4			• .	·	METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV
71 8	6		7			ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN
107	· O					AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C
142	<del>کا تم</del> یہ					MAX GAIN 1000 ANALYSIS TIME 500.0 SEC PEAK REPORT
178						PK COMPOUND NAME       AREA/CONC       R.T.         1 UNKNOWN       0.059 MVS       16.9         2 UNKNOWN       10.52 MVS       19.2         3 UNKNOWN       52.81 MVS       21.0         4 UNKNOWN       37.52 MVS       27.6
214						5       UNKNOWN       57.25 MVS       32.6         6       UNKNOWN       19.65 MVS       51.1         7       BENZENE       106.2 PPB       65.2         8       UNKNOWN       0.651 MVS       80.6
10 250 )1	.1					8       UNKNOWN       0.651 MVS       80.6         9       TOLUENE       103.2 PPB       127.0         10       UNKNOWN       1.272 MVS       231.2         11       ETHYLBENZENE       98.22 PPB       259.2         12       M,P-XYLENE       188.0 PPB       278.1         13       0-XYLENE       68.30 PPB       324.2
285	.12	·		•		
321	;			•		
357			. ,			
392		•		•	·	JOE BYRD, JR.
428						DULUTH ANGB 100 PPB BTEX
464				•		

_	ΔΝΖ	7FAC16	#3	105+	GC	FUNC	TION ANALYSIS REPORT
	0	2	4	6 (x	8 10	10 MV)	TIME PRINTED: MAY 17,95 08:06 SAMPLE TIME: MAY 17,95 07:57 METHOD
_ +	71	2 3 4 5 6					SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
	10	3 7 9		7			DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 29 C
	14:		.0				MAX GAIN 1000 ANALYSIS TIME 500.0 SEC  PEAK REPORT PK COMPOUND NAME AREA/CONC R.T.
	178	3 .	•				1 UNKNOWN       0.097 MVS       18.6         2 UNKNOWN       8.173 MVS       20.9         3 UNKNOWN       35.18 MVS       22.6         4 UNKNOWN       19.48 MVS       29.8
	214	4	•••	•	•		5 UNKNOWN 18.64 MVS 35.6 6 UNKNOWN 0.398 MVS 54.6 7 UNKNOWN 277.1 MVS 76.5 8 UNKNOWN 2.155 MVS 84.0 9 UNKNOWN 0.483 MVS 93.4
	250	) ]1	•				10 UNKNOWN 182.4 MVS 138.5 11 UNKNOWN 107.3 MVS 267.2 12 UNKNOWN 130.4 MVS 285.6 13 UNKNOWN 48.03 MVS 337.3
	28	12				•	
	37	13				•	
	39:	2				·	NOTES JOE BYRD, JR. DULUTH ANGB 100 PPB BTEX
	42 46	·				,	

Pk: h	G.C. Res Analysis to Na	ady s no 3 ame .	188+ C	GC Fur Run a onc/Ar	nctio st - ea	n May May 17: Hlaro	17, 95,	95 08 07:57 Ret.Ti	3:13 .me
	Unknowr Unknowr benzene Unknowr Unknowr toluene ethylbe m,p-xyl o-xyler etected	) } } Pnzene lene	ıks. U	18.64 0.398 100.8 100.55 100.0 100.0 100.0 100.0 100.0	, 444444444444444444444444444444444444	-Hc- -Hc- -Hc- -Hc- -Hc- -Hc- scroll	-	54645845065 557895685578 55789568555	800 800 800 800 800 800 800 800 800 800
59	(mU)		7					187.5	uU
44									
29			//		10				
14	9				Ä		1 1		
Ø	<u> </u>	45 <del>C</del>	6 <u>                                    </u>	89 	5 7	89 Z:	<u>/r</u> >	10 1567	<u>50</u> 0

Ana	ANALYSIS #4 10S+ GC			Func	ΓΙΟΙ	n Analysis Report				
0	1	2		4	6 (x	•	8 100	10 mV)		TIME PRINTED: MAY 17,95 08:23 SAMPLE TIME: MAY 17,95 08:15 METHOD
35, 71	, <u></u>	2	<del>'1</del>							SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
10/	7			: 				6		WINDOW PERCENT 10.0 %  DET FLOW 12 ML/MIN  B/F FLOW 12 ML/MIN  AUX FLOW 0 ML/MIN  OVEN TEMP 40 C
143	<del>2</del>			7	•			•	ŀ	AMB TEMP 30 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC  PEAK REPORT COMPOUND NAME AREA/CONC R.T.
	. ,				•			•	123450	UNKNOWN       0.056 MVS       16.0         UNKNOWN       0.084 MVS       17.8         UNKNOWN       0.135 MVS       18.8         UNKNOWN       1.488 VSEC       23.0         UNKNOWN       0.596 MVS       47.8
214	•				•	•	•		6 7 8 9 10	BENZENE       2.734 PPM       77.2         TOLUENE       1.938 PPM       138.9         ETHYLBENZENE       2.221 PPM       268.2         M,P-XYLENE       3.749 PPM       286.6         O-XYLENE       2.084 PPM       337.3
) `e <i>g</i> 8!	5	8	•		•				To design the figure team range to the contract of the figure and the contract of the contract	
32	1 .				•	•	•		AND THE PROPERTY OF THE PROPER	
35 393	7 .			,					**************************************	NOTES
428	•							, ,		JOE BYRD, JR. DULUTH ANGB PPM BTEX
. 48	<u>(т</u>								!	·



0	2	4	6 (x	8 100	10 mV)	TIME PRINTED: MAY 17,95 SAMPLE TIME: MAY 17,95	
35 35 34 5	2	·	. •			METHOD SLOPE UP 0.500 SLOPE DOWN 1.500 MIN AREA 0.000 MIN HEIGHT 0.000	MV/SEC MV/SEC MVSEC MV
71	6				7	Analysis Delay 0.0 Window Percent 10.0 Det Flow 12	SEC   %   ML/MIN
107/						B/F FLOW 12 AUX FLOW 0 OVEN TEMP 40	ML/MIN ML/MIN C
42-	<del>-</del>						C SEC
178	,					PEAK REPORT PK COMPOUND NAME AREA/CO 1 UNKNOWN 0.052 I 2 UNKNOWN 5.132 I 3 UNKNOWN 54.13 I	MVS 18.8 MVS 21.4
214				•		4 UNKNOWN 34.81 I 5 UNKNOWN 34.36 I 6 UNKNOWN 0.103 I 7 BENZENE 3.956 I 8 TOLUENE 7.032	MVS 30.4 MVS 36.0 MVS 55.3 PPM 79.8
250	9		•		·	9 UNKNOWN 4.330 10 ETHYLBENZENE 7.386 11 M,P-XYLENE 14.38 12 O-XYLENE 5.601	MVS 236.6 PPM 272.2 PPM 289.8
285					1(		
; 321	با با با با سمم		_ <del></del>	·	- <b>-</b>		
	) i	.2	•				
392						NOTES	
<b>→</b>						JOE BYRD, JR. DULUTH ANGB 10 PPM BTEX	
42/8							

Pk M	i.C. Res Analysis o ha	ady Mo 5 ame	Fil.	Function In at - M /Area	May 17, lay 17,95 Alarm		::44   -   me
	Unknowr Unknowr Unknowr toluens toluens Unknowr ethylbs m,p-xyl o-xyler etected	) } } } POZene	34.1 34.0 0.0 14.0 14.0 19.0 19.0 Us	36 mVS mVS mVS ppm ppm ppm ppm ppm ppm	-No- -No- -No- -No- -No- -No- -No- -No-	495056009 9659460949 5557457045 10025	sec sec sec sec sec sec sec sec sec
999	$(U_{\mathfrak{m}})$		Ä	Å	i i i i i i i i i i i i i i i i i i i	194.5	uV
749						ì	
499							
249					_	) 12   ^	
9	13 5 24	45 48			9   <u> </u>  9   265	<u> </u>	500

.

ANAL	YSIS	#6	10S	+ GC	Func	TION ANALYSIS REPORT
0	1	2	3 . (x	4 1000	5 uV)	TIME PRINTED: MAY 17,95 08:54 SAMPLE TIME: MAY 17,95 08:45 METHOD
35		3	2		·	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC
71	•					MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
5 107	6				,	DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN
1/10						OVEN TEMP 40 C AMB TEMP 30 C MAX GAIN 1000
142						ANALYSIS TIME 500.0 SEC PEAK REPORT
8 178	·				,	PK COMPOUND NAME         AREA/CONC         R.T.           1 UNKNOWN         0.067 MVS         18.5           2 UNKNOWN         52.43 MVS         22.8           3 UNKNOWN         0.196 MVS         29.5
214						4       BENZENE       0.795 PPB       76.9         5       UNKNOWN       5.512 MVS       84.9         6       UNKNOWN       27.63 MVS       94.4         7       TOLUENE       11.98 PPB       140.6         8       UNKNOWN       5.801 MVS       161.0
250		•	•	. , .		9 M,P-XYLENE 83.47 PPB 289.8 10 O-XYLENE 19.58 PPB 347.0
		•	•			
285			•			
701		•	•	٠.		
321			•		•	
		•	•			
357	.10					
	1					
392		,			•	NOTES
						JOE BYRD, JR. DULUTH ANGB AIR BLANK
428					•	ATH DEATH
464						

ANALVOIC #7	108+ GC FUNC	TION ANALYSIS REPORT
0 4 8	12 16 20	TIME PRINTED: MAY 17,95 09:06
	(x 1000 uV)	SAMPLE TIME: MAY 17,95 08:58
1,1		METHOD
35 =2	3	SLOPE UP 0.500 MV/SEC
1 // 4	2	SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC
5		MIN HEIGHT 0.000 MV
71/		ANALYSIS DELAY 0.0 SEC
		WINDOW PERCENT 10.0 %
-b -7		DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN
6 -Z 107 8		B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN
1107		OVEN TEMP 40 C
9		AMB TEMP 30 C
		MAX GAIN 1000
142		ANALYSIS TIME 500.0 SEC
/10		PEAK REPORT PK COMPOUND NAME AREA/CONC R.T.
	•	1 UNKNOWN 0.304 MVS 19.1
178		2 UNKNOWN 10.12 MVS 21.1
		3 UNKNOWN 187.3 MVS 23.2
		4 UNKNOWN 2.390 MVS 30.2
214		5 UNKNOWN 0.537 MVS 38.0 6 BENZENE 0.722 PPB 77.2
214		7 UNKNOWN 4.347 MVS 85.4
		8 UNKNOWN 8.402 MVS 95.0
		9 UNKNOWN 5.935 MVS 117.4
250	X	10 TOLUENE 3.303 PPB 140.4
11		11 ETHYLBENZENE 0.340 PPB 249.6 12 M,P-XYLENE 31.19 PPB 290.6
	e e e	13 O-XYLENE 11.22 PPB 346.3
285	•	
12		
321		
) <u></u>		
357 13		
	•	
392		NOTES
		JOE BYRD, JR.
		DULUTH ANGB
428		021-027вн 4.0- 6.0 10g
740		7.0 0.0 100



ΔΝΔΙ	.vc.ic	#10		10	<u>S+</u>	GC	FUNC	TION ANALYSIS REPORT
0	2	4		6 (x		8 00	10 uV)	TIME PRINTED: MAY 17,95 09:42 SAMPLE TIME: MAY 17,95 09:34
1								METHOD See 11/1/2-1
35	· 		Z		3			SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC
	سيسمسم		4		)		•	MIN AREA 0.000 MVSEC
	•	,	•					MIN HEIGHT 0.000 MV
71/								Analysis Delay 0.0 sec
	•			,		·	•	WINDOW PERCENT 10.0 %
5								DET FLOW 12 ML/MIN
107	7							B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN
107	.'							AUX FLOW 0 ML/MIN OVEN TEMP 40 C
								AMB TEMP 30 C
				•		•		MAX GAIN 1000
142								ANALYSIS TIME 500.0 SEC
8						,	•	PEAK REPORT
								PK COMPOUND NAME AREA/CONC R.T.
178								1 UNKNOWN 0.064 MVS 18.9 2 UNKNOWN 7.599 MVS 22.1
110		•		•			٠	2 UNKNOWN 7.599 MVS 22.1 3 UNKNOWN 121.6 MVS 24.2
								4 UNKNOWN 0.433 MVS 30.6
		•		•				5 BENZENE 0.029 PPB 80.0
214								6 UNKNOWN 2.715 MVS 84.9
				,			·	7 UNKNOWN 13.01 MVS 96.4
								8 TOLUENE 1.969 PPB 141.0
250								9 ETHYLBENZENE 2.156 PPB 248.2 10 M,P-XYLENE 2.776 PPB 292.0
9	,					,		10 M,P-XYLENE 2.776 PPB 292.0 11 O-XYLENE 1.850 PPB 343.6
								11.000 PTB 049.0
		•						
285								
10								
321								
357	11							
!!!				•				
<b>Z</b> 02								Notes
392	÷							NOTES JOE BYRD, JR.
								DULUTH ANGB
		•				•		021-028вн
428								0.5- 2.5 10g
464								
: TUT								:

ANALVEIS	#11	10S+ GC	FUNC	TION ANALYSIS REPORT
0 2	4	6 8 (x 1000	10 uV)	TIME PRINTED: MAY 17,95 09:54 SAMPLE TIME: MAY 17,95 09:46
35		= <del>2</del>	<del>-</del> 3	METHOD SLOPE UP 0.500 mV/SEC SLOPE DOWN 1.500 mV/SEC MIN AREA 0.000 mVSEC
71			5	MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
107 ⁻ 8				DET FLOW 12 ML/MIN B/F FLOW 10 ML/MIN OVEN TEMP 40 C
142 10				AMB TEMP 30 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC PEAK REPORT
11 178				PK COMPOUND NAME         AREA/CONC         R.T.           1 UNKNOWN         0.649 MVS         19.7           2 UNKNOWN         8.885 MVS         22.2           3 UNKNOWN         92.85 MVS         24.4           4 UNKNOWN         1.992 MVS         31.2
214			·	5 UNKNOWN 72.39 MVS 39.5 6 BENZENE 0.157 PPB 80.2 7 UNKNOWN 7.027 MVS 84.8 8 UNKNOWN 11.89 MVS 96.9
250 /13				9 UNKNOWN 0.028 MVS 115.0 10 TOLUENE 1.869 PPB 141.6 11 UNKNOWN 0.994 MVS 161.8 12 UNKNOWN 1.665 MVS 184.4
285 14 15				13 UNKNOWN 4.839 MVS 247.7 14 ETHYLBENZENE 3.057 PPB 275.2 15 M,P-XYLENE 5.382 PPB 294.6 16 O-XYLENE 5.461 PPB 339.3
321				
16 357			·	
392				NOTES JOE BYRD, JR.
428				DuLuтн ANGB 021-028вн 8.0-10.0 20g
464				

Δι	JAL.	VCIC	#12	108+	GC	FUNC	LION	ANALYSIS REPORT		
(		2	4	6 (x	8 10	10 mV)			y 17,95 09	0:06 9:58
35	4 5 4 5	2 3						METHI SLOPE UP. SLOPE DOWN MIN AREA MIN HEIGHT ANALYSIS DELAY WINDOW PERCENT	0.500 MV/	
1(	Company Assessment of State of	7		6				DET FLOW B/F FLOW AUX FLOW OVEN TEMP AMB TEMP MAX GAIN ANALYSIS TIME	12 ML/	/MIN /MIN /MIN
	78	<b>7</b> 8					PK 1 2 3 4		EPORT AREA/CONC 0.046 MVS 7.622 MVS 46.85 MVS 31.99 MVS	R.T. 19.4 22.1 24.2 31.2
	14	• *	•		•		5 6 7 8 9	UNKNOWN BENZENE UNKNOWN TOLUENE UNKNOWN ETHYLBENZENE	56.32 MVS 96.58 PPB 2.715 MVS 70.20 PPB 1.079 MVS 61.78 PPB	36.9 79.8 96.5
	9 85	10	•			· ·		M,P-XYLENE O-XYLENE	118.6 PPB 51.25 PPB	290.9 344.3
321	The same of the sa				<b>4</b> ·		***************************************			
357	2				•		And the same of th			
307	Total Control of the			Joe Byr Duluth	ANGB	Notes				
428	***************************************		, .	100 PPB	BTEX		ne en e			

45<u>1</u>

ANALYSIS	#25	10S+ GC	FUNC	TION ANALYSIS REPORT
0 2	4	6 8 (x 10	10 MV)	
35 2 				METHOD SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC
71			·	MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN
107 6		5	·	B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C
142				MAX GAIN 1000 ANALYSIS TIME 500.0 SEC PEAK REPORT
178				PK COMPOUND NAME       AREA/CONC       R.T.         1 UNKNOWN       0.042 MVS       20.6         2 UNKNOWN       55.58 MVS       25.6         3 UNKNOWN       31.74 MVS       32.8         4 UNKNOWN       56.63 MVS       39.0
214	•			4       UNKNOWN       56.63 MVS       39.0         5       BENZENE       95.93 PPB       84.2         6       UNKNOWN       1.090 MVS       98.9         7       TOLUENE       91.85 PPB       145.2         8       UNKNOWN       0.577 MVS       253.0
250 8				9 ETHYLBENZENE 87.00 PPB 277.0 10 M,P-XYLENE 177.5 PPB 294.4 11 O-XYLENE 92.84 PPB 347.3
285 9				
321	•	•	·	
357 11				
392				NOTES JOE BYRD, JR.
428				DULUTH ANGB 100 PPB BTEX
464				



A	NAL	YSIS	#2	26	1	0S+	GC	Func.	TION ANALYSIS REPORT
		1		2	3 ()		4 100	5 MV)	TIME PRINTED: MAY 17,95 15:18 SAMPLE TIME: MAY 17,95 15:09 METHOD
3							<u></u>	2 .	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC
7.	       				·		٠		MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC
		•		٠		•	•	•	WINDOW PERCENT 10.0 %  DET FLOW 12 ML/MIN  B/F FLOW 12 ML/MIN
10	07 6	5	•					,	AUX FLOW 0 ML/MIN OVEN TEMP 40 C
142	]/ 2						•		AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
		·		•		•			PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.025 MVS 20.5
1	78	,	•	÷		•	,		2 UNKNOWN 4.491 VSEC 26.8 3 UNKNOWN 21.96 MVS 54.2 4 BENZENE 1.045 PPB 84.4
2	14								5 UNKNOWN 2.850 MVS 91.8 6 UNKNOWN 3.364 MVS 95.8
	1								7 UNKNOWN 7.268 MVS 100.5
2	50			•					
2	85	1.	•						
3:	21	ı	•		•				
		ł		•		•		•	
3	57	•	•	٠	•				
3:	           								NOTES
***************************************			•			•	•		JOE BYRD, JR. DULUTH ANGB AIR BLANK
4:	28	•					•	•	
4	64			٠					

464

	A	NΑ	LY	SIS	3 #	28	]	LOS+	- GC	FUNC	TION ANALYSIS REPORT	
		0		2		4	. (		8 L000	10 uV)	TIME PRINTED: MAY 17,95 15:41 SAMPLE TIME: MAY 17,95 15:33 METHOD	
	3.	5		1			—	<u></u> 3		2	SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV	
	7.	1/	7								Analysis Delay 0.0 sec Window Percent 10.0 % Det Flow 12 ml/min	
	1	)7 /	/ 4 5		•	,					B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000	
1	42	2						,			Analysis Time 500.0 sec	
		6									PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.147 MVS 21.2	)
	1	78	}			٠				,	2 UNKNOWN       205.7 MVS       26.2         3 UNKNOWN       1.139 MVS       33.6         4 BENZENE       4.457 PPB       85.7         5 UNKNOWN       4.166 MVS       101.2	7
	2	14							·	·	6 TOLUENE 1.165 PPB 146.2 7 M,P-XYLENE 43.98 PPB 317.6 8 UNKNOWN 12.97 MVS 393.0	) }
	25	50	)		•							
Annual Control of the	28	35	•		-							:
	32	21 7	· •									
	3!	∮ 57	, ,									
4 4444	39 42	<b>1</b> 222	8								NOTES JOE BYRD, JR. DULUTH ANGB 017-024BH 4.0-6.0 10G	
	<u>119</u>	<b>7</b> 4	ļ.				,					

ANAL	YSIS	#29	108	S+ GC	FUNC	TION ANALYSIS REPORT
0	2	4	6 (x	8 1000	10 uV)	TIME PRINTED: MAY 17,95 15:55 SAMPLE TIME: MAY 17,95 15:46
35 71/	1			2		METHOD SLOPE UP 0.500 mV/Sec SLOPE DOWN 1.500 mV/Sec MIN AREA 0.000 mVSec MIN HEIGHT 0.000 mV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
73 187 4 142					·	DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
5 178						PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.164 MVS 21.4 2 UNKNOWN 160.2 MVS 27.2 3 BENZENE 5.662 PPB 86.5 4 UNKNOWN 5.613 MVS 102.0
214			•			5 TOLUENE 1.442 PPB 148.0 6 ETHYLBENZENE 3.653 PPB 255.2 7 M,P-XYLENE 8.594 PPB 295.2
250	,	•				
6						
285						
7						
321						
357			•			
392						NOTES
	•			•	•	JOE BYRD, JR. DULUTH ANGB 017-025BH
428					•	0.5- 2.5 10g

ANAL	YSIS	#30	10	S+ (	GC Fu	NC.	CTION ANALYSIS REPORT	
0	4	8	12 (x	16 100	5 2 00 uV		TIME PRINTED: MAY 17,95 16:06 SAMPLE TIME: MAY 17,95 15:58	
35		2					METHOD SLOPE UP 0.500 mV/Sec SLOPE DOWN 1.500 mV/Sec	
	Service Servic			<i>5</i> 5	. 4		SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV	
7	6	•			,		ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %	
3-	8 ≽						DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN	
107	10 1						AUX FLOW 0 ML/MIN OVEN TEMP 40 C	
>	∍ 12						AMB TEMP 31 C MAX GAIN 1000	
142	•	•. • • • • • • • • • • • • • • • • • •					ANALYSIS TIME 500.0 SEC PEAK REPORT	T. 4.
								. 7
178	13						3 UNKNOWN 23.49 MVS 22	.8
14 214					•		5 UNKNOWN 91.80 MVS 33	.0
214					•		7 UNKNOWN 37.83 MVS 50	.8
250			٠				9 UNKNOWN 5.843 MVS 73	.2
15	,				•		11 UNKNOWN 8.634 MVS 100 12 UNKNOWN 15.93 MVS 119	.2
285					-		13 UNKNOWN       3.533 MVS       168         14 UNKNOWN       2.439 MVS       187	8.
							15 ETHYLBENZENE 16.37 PPB 251 16 O-XYLENE 4.179 PPB 344	
321					•			
357	16							
700					•			
392			*•				NOTES - JOE BYRD, JR. DULUTH ANGB	
428							017-024вн 8.0-10.0 15g	į
,,,,								

A	NAL	YSIS	#3	L	10	S+	GC	Func	TION ANALYSIS REPORT
	0	1		2	3 (x		4 10	5 MV)	TIME PRINTED: MAY 17,95 16:18 SAMPLE TIME: MAY 17,95 16:10
3.		4	3	1	2			÷.	METHOD SLOPE UP 0.500 mV/SEC SLOPE DOWN 1.500 mV/SEC MIN AREA 0.000 mVSEC MIN HEIGHT 0.000 mV
7.	6	5				,		,	ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN
10	<b>)</b> 7	7				•	•		AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C
142	2		•						Max Gain 1000 Analysis Time 500.0 sec Peak Report
1	78								PK COMPOUND NAME         AREA/CONC         R.T.           1 UNKNOWN         24.96 MVS         21.1           2 UNKNOWN         51.13 MVS         22.6           3 UNKNOWN         88.87 MVS         25.9           4 UNKNOWN         137.0 MVS         33.0
2.	14		· · · · · · · · · · · · · · · · · · ·					•	5       UNKNOWN       0.507 MVS       43.9         6       BENZENE       5.534 PPB       84.9         7       UNKNOWN       7.535 MVS       100.0         8       TOLUENE       0.883 PPB       145.8
25	50 9	•			•		•		9 ETHYLBENZENE 3.561 PPB 252.0 10 UNKNOWN 0.337 MVS 442.4
28	35								
32	21								
35	57								
39	92								NOTES JOE BYRD, JR. DULUTH ANGB
42	28 10								017-025вн 4.0- 6.0 10g
46									

ANALYSIS #3	2 105+	GC FUNC	TION ANALYSIS REPORT
	•	4 5 10 mV)	TIME PRINTED: MAY 17,95 16:30 SAMPLE TIME: MAY 17,95 16:22 METHOD
35 71 			SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC MIN HEIGHT 0.000 MV
71		<del></del> 5	Analysis Delay 0.0 sec Window Percent 10.0 % Det Flow 12 ml/min
107 6			AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 31 C MAX GAIN 1000
142			ANALYSIS TIME 500.0 SEC PEAK REPORT
178			PK COMPOUND NAME       AREA/CONC       R.T.         1 UNKNOWN       0.054 mVS       21.1         2 UNKNOWN       58.48 mVS       26.3         3 UNKNOWN       33.14 mVS       33.8         4 UNKNOWN       58.62 mVS       40.0
214			5       BENZENE       96.14 PPB       85.6         6       UNKNOWN       1.170 MVS       100.5         7       TOLUENE       80.53 PPB       146.4         8       UNKNOWN       0.430 MVS       251.4         9       ETHYLBENZENE       64.00 PPB       277.8
250			10 M,P-XYLENE 115.2 PPB 296.5 11 O-XYLENE 108.1 PPB 349.6
285 9 10	•		
321			
357 11			
392			NOTES JOE BYRD, JR. DULUTH ANGB
428			100 PPB BTEX
ЦКU			



	A	NAL	_YSI	s #	±33	1	0\$-	+ GC	FUNC	TION ANALYSIS REPORT
***************************************	(	0	1	•	2	3		4 1000	5 uV)	TIME PRINTED: MAY 17,95 16:44 SAMPLE TIME: MAY 17,95 16:36 METHOD
	3!	5	I			2				SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC
	7.	1/							**	MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN
	10	97_	' 4 ' 5	,						B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C
· · · · · · · · · · · · · · · · · · ·	42	2							•	AMB TEMP 32 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC PEAK REPORT
***************************************	17	78								PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.096 MVS 21.8 2 UNKNOWN 66.38 MVS 28.9 3 UNKNOWN 1.179 MVS 34.7
	21	<u>L</u> 4								4 BENZENE       4.979 PPB       87.0         5 UNKNOWN       5.104 MVS       102.8         6 ETHYLBENZENE       4.472 PPB       257.3         7 O-XYLENE       3.847 PPB       342.6
	25	_						· · ·	·	
	28	ь 35						•		
	32	21							,	
	35	7	7		,				٠.	
	39	2			·					NOTES IOE RYPD (D
	+2	8								JOE BYRD, JR. DULUTH ANGB AIR BLANK
L	+6	4								

ANALYSIS #34	10S+ GC Func	TION ANALYSIS REPORT
0 2 4	6 8 10 (x 1000 uV)	TIME PRINTED: MAY 17,95 16:56 SAMPLE TIME: MAY 17,95 16:48
35 1	2	METHOD SLOPE UP 0.500 mV/SEC SLOPE DOWN 1.500 mV/SEC MIN AREA 0.000 mVSEC
71		MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
74 107 5		DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C
142		AMB TEMP 32 C  MAX GAIN 1000  ANALYSIS TIME 500.0 SEC  PEAK REPORT
6   178		PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.048 MVS 22.0 2 UNKNOWN 187.3 MVS 28.0
214		3 UNKNOWN       1.479 MVS       35.8         4 BENZENE       5.285 PPB       88.2         5 UNKNOWN       2.189 MVS       103.8         6 TOLUENE       3.223 PPB       149.2
		7 ETHYLBENZENE 6.868 PPB 256.5 8 M,P-XYLENE 11.97 PPB 300.5 9 O-XYLENE 0.894 PPB 355.0
250 7		Part of the part o
285		
8 321		
3 <del>5</del> 7 9		
392		NOTES IN INC.
428		JOE BYRD, JR. DULUTH ANGB 017-022BH 0.5- 2.5 10G
464		The control of the co

ANALYSIS #35	10S+ GC FUNC	TION ANALYSIS REPORT
0 4 8	12 16 20 (x 1000 uV)	TIME PRINTED: MAY 17,95 17:08 SAMPLE TIME: MAY 17,95 16:59
35 2 4		METHOD SLOPE UP 0.500 mV/SEC SLOPE DOWN 1.500 mV/SEC MIN AREA 0.000 mVSEC
71/6	5	MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
-7 107 8 79		DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C
142		AMB TEMP 32 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC PEAK REPORT
10 178		PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.727 MVS 6.0 2 UNKNOWN 1.583 MVS 11.0
214		4 UNKNOWN       15.74 MVS       27.6         5 UNKNOWN       197.2 MVS       31.0         6 UNKNOWN       2.110 MVS       39.3
250		7       BENZENE       3.015 PPB       85.0         8       UNKNOWN       6.483 MVS       92.1         9       UNKNOWN       2.666 MVS       108.1         10       TOLUENE       3.050 PPB       153.6
11		11 ETHYLBENZENE 6.981 PPB 256.0 12 M,P-XYLENE 8.502 PPB 304.5
285		
12  321		
357		
392		NOTES JOE BYRD, JR.
428		DULUTH ANGB 017-023BH 0.5- 2.5 10G
464		



ANALYSIS #37	10S+ GC FUNC	TION ANALYSIS REPORT
0 2 4	6 8 10 (x 1000 UV)	TIME PRINTED: MAY 17,95 17:33 SAMPLE TIME: MAY 17,95 17:24 METHOD
35 1	2	SLOPE UP 0.500 mV/SEC SLOPE DOWN 1.500 mV/SEC MIN AREA 0.000 mVSEC
71		MIN HEIGHT 0.000 MV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 % DET FLOW 12 ML/MIN
107		B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C
142		AMB TEMP 32 C MAX GAIN 1000 ANALYSIS TIME 500.0 SEC
6   178		PEAK REPORT PK COMPOUND NAME AREA/CONC R.T. 1 UNKNOWN 0.120 MVS 29.4 2 UNKNOWN 172.2 MVS 37.7 3 UNKNOWN 0.520 MVS 47.0 4 BENZENE 12.89 PPB 85.4
214		5 UNKNOWN 3.923 MVS 115.0 6 TOLUENE 3.273 PPB 161.0 7 ETHYLBENZENE 4.339 PPB 263.7
250	• • •	
7 285		
321		
357		
392		NOTES JOE BYRD, JR.
428		DuLuтн ANGB 017-028вн 0.5- 2.5 10g
464		

464

	ANAL	YSIS	#39	10S+	GC	Func	TION ANALYSIS REPORT
	0	1	2	3 (x	4 10	5 MV)	TIME PRINTED: MAY 17,95 17:56 SAMPLE TIME: MAY 17,95 17:48 METHOD
	35	1 2 3	• .		٠		SLOPE UP 0.500 MV/SEC SLOPE DOWN 1.500 MV/SEC MIN AREA 0.000 MVSEC
	7 <b>1</b>			:			MIN HEIGHT 0.000 mV ANALYSIS DELAY 0.0 SEC WINDOW PERCENT 10.0 %
	5 107 7					6	DET FLOW 12 ML/MIN B/F FLOW 12 ML/MIN AUX FLOW 0 ML/MIN OVEN TEMP 40 C AMB TEMP 32 C
	142						MAX GAIN 1000 ANALYSIS TIME 500.0 SEC PEAK REPORT
	178	<del>-</del> 8					PK COMPOUND NAME         AREA/CONC         R.T.           1 UNKNOWN         0.069 MVS         23.1           2 UNKNOWN         59.62 MVS         29.6           3 UNKNOWN         32.97 MVS         37.6
	214					·	4 UNKNOWN       48.87 MVS       44.8         5 BENZENE       1.894 PPB       85.4         6 UNKNOWN       172.4 MVS       90.9         7 UNKNOWN       0.789 MVS       106.0         8 TOLUENE       90.99 PPB       151.8
	250 9						9 UNKNOWN 2.160 MVS 256.8 10 ETHYLBENZENE 95.85 PPB 284.0 11 M,P-XYLENE 137.7 PPB 303.4 12 O-XYLENE 31.27 PPB 352.6
> <i>c</i>	285 /10						
	321						
	357 12						
	392		·. •		. •		NOTES JOE BYRD, JR. DULUTH ANGB
	428	,					100 PPB BTEX
	ΔRΔ				٠	·	

THIS PAGE INTENTIONALLY LEFT BLANK

## APPENDIX H INSPECTION DERIVED WASTE MANAGEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

### SECTION H.1 INTRODUCTION

This appendix concerns the contents of the twenty-nine drums of the Facility Investigation (FI) derived waste which was generated during the recent RCRA Facility Investigation at the 148th Fighter Group, Minnesota ANGS, Duluth, Minnesota. Twenty-one of these drums contain soil cuttings, two contain composite soil, two contain decontamination water, and six contain monitor well development and purge water. The attached Table H.1 is a summary of the recommended disposition for each of these drums. The attached Table H.2 is a summary of the maximum concentrations of analytes contained in each drum.

THIS PAGE INTENTIONALLY LEFT BLANK

### Dulith RFI - Site 17

### INVESTIGATION DERIVED WASTE LOG

(Page 1092

Drum	Contents (Water/Soil Cuttings/Borehole/MW/Decon)	% Full
017- 019BH	Dril atting - Soil 7/20/94	V 20
017 - 0208H	Drill Cuttings-Soil 7/20/94	15
017-013BH 017-012BH 017-014BH	Drill Cuttings - Soil 7/18/94-7/19/94	~35
017-015 <b>B</b> H		~15
017- 016BH.	Duil Cuttings - Said 7/18/94	45
017- 0118H	Drill Cuttings - Soil 7/19/44	~ ?ò
017 - cloBH	Duild Cutting-Soil 7/19/94	~15
il7 - ionpoite Soil	Umposite Sal 7/18/94 - 7/2/94	40
017- Deioni	Decon. vata 7/18/94 - 7/20/94	100
0 17 - 018 B/+ 017-017B#	Dille Certhings - Soil 7/19/14- 7/20/94	23 C

Location of Drums:_	on Parl at Site 17	
Date Stored:	7/20/94	
Site Manager:	Kuthip Pritileti	

## Duluth RFI - Site 17 Page 242

### INVESTIGATION DERIVED WASTE LOG

Drum	Contents (Water/Soil Cuttings/Borehole/MW/Decon)	% Full
017- 009mW	Punge Water 2/28/92	250
•		
		·

Location of Drums:_	On Pad at Site 17	
Date Stored:	7/28/94	
Site Manager:	Kathyn Putilett	

### INVESTIGATION DERIVED WASTE LOG

Drum	Contents (Water/Soil Cuttings/Borehole/MW/Decon)	% Full
021- 018 BH	Diel Cutting - Soil 7/14/94	5°0
021-026 mw	Dill Cutting - Soil 7/15/14	7.0
021- 021B4	Duil Cuttings - Soil 7/13/94	30
021- 0198H	Dill Cuttings- Sirl 7/14/94	75
OLI- De con hater	Decon Water 7-/12/94 - 7/15/94	100
021- Composite	Composite Sal 7/12/94 - 7/15/94	30
021- 0158H	Drill Cuthings - Sill 7/11/94	30
021- 009mw	Pringe water ~ 8 gailore 7/22/94	15
021- 010mw	Purje water ~ 12 gallos 7/22/94	22
651-	Punge wither ~ 50 gailors 7/22/44	91

Location of Drums: Stath of Buildin 240

Date Stored: 7/21/94 and 7/20/94

Site Manager: Kathaya Patawat

### INVESTIGATION DERIVED WASTE LOG

Drum	Contents (Water/Soil Cuttings/Borehole/MW/Decon)	% Full
021- 026mw	Development water & some Purge water 7/194 240 gallon 7/22/94	73
021- 014/mw	Purge Water 7/21/94 ~20 guilore	36
021- 0168H	Prill Cuttings - Sil 7/14/94	30
021- 025BH	Drill Cutting - Soil. 7/12/94	3=
021- 021-023BH	Drill Cuttings - Soil 7/12/94	70
021- 0228H	Duil Cuthing - Soil 7/13/94	50
021-	Dull Lithing - Soil 7/15/94	3℃
021 - 010 BH	Duil Cathering-Soil 7/13/14	50
	THE CONTRACTOR OF THE CONTRACT	

Location of Drums	: Sout	d of Building	245	
Date Stored:	7/21/44	und 7/26/94		
Site Manager:	Cathyn	Pritirett		

## Recommended Disposition of Inspection Derived Waste Minnesota Air National Guard Base Duluth, Minnesota

Drum		Recommended	
Indentification	Origin	Disposition	Rationale :
021-018BH	Drill Cuttings	Dispose of in a landfill which	Analytical results show TPH
	Soil	accepts TPH contaminated soil	exceeds the State action level.
	7/14/94	or send to a soil recycler.	
021-026MW	Drill Cuttings	Dispose of in a landfill which	Analytical results show TPH
	Soil	accepts TPH contaminated soil	exceeds the State action level.
	7/15/94	or send to a soil recycler.	
021-021BH	Drill Cuttings	Dispose of in a landfill which	Analytical results show Benzene
	Soil	accepts Benzene contaminated	significantly exceeds the State
	7/13/94	soil or send to a soil recycler.	action level.
021-019BH	Drill Cuttings	Dispose of in a landfill which	Analytical results show Benzene
	Soil	accepts Benzene contaminated	significantly exceeds the State
	7/14/94	soil or send to a soil recycler.	action level.
021-Decontamination Water	Decontamination Water	Decontamination Water Determine whether City of	Potential contaminants contacted
	07/12/94 - 07/15/94	Duluth Wastewater	sampling equipment; Benzene,
		Management will allow	TPH, Trichloroethane and Nickel
		Benzene, TPH, Trichloroethane	are the only contaminants which
		and Nickel contaminated water	significantly exceeded State action
		to be disposed of in the sewer	levels.
		system.	
021-Composite Soil	Composite Soil	Dispose of in a landfill which	Analytical results show Benzene
	07/12/94 - 07/15/94	accepts Benzene contaminated	significantly exceeds the State
	, , , , , , , , , , , , , , , , , , , ,	soil or send to a soil recycler.	action level.
021-015BH	Drill Cuttings	Dispose as a solid waste.	No analytes exceeded TCLP
	Soil		regulatory limits.*
	7/14/94		Concentrations of analytes for
			which TCLP regulatory levels do
			not exist were equal to or less
			than site-specific background
			concentrations.

# Table H.1 (Continued) Recommended Disposition of Inspection Derived Waste Minnesota Air National Guard Base Duluth, Minnesota

Drum Indentification	Origin	Recommended Disposition	Rationale
021-009MW	Purge Water	Determine whether City of	Analytical results show Nickel
	~ 8 gallons	Duluth Wastewater	exceeds Federal and State action
	7/22/94	Management will allow metal	levels.
		contaminated water to be	
		disposed of in the sewer	
		system.	
021-010MW	Purge Water	Determine whether City of	Analytical results show Nickel
	~ 12 gallons	Duluth Wastewater	exceeds Federal and State action
	7/22/94	Management will allow metal	levels.
		contaminated water to be	
		disposed of in the sewer	
		system.	
WM920-120	Purge Water	Determine whether City of	Analytical results show Nickel
	~ 50 gallons	Duluth Wastewater	exceeds Federal and State action
	7/22/94	Management will allow metal	levels.
		contaminated water to be	
		disposed of in the sewer	
		system.	
021-026MW	Development	Determine whether City of	Analytical results show Nickel
	Water & Some	Duluth Wastewater	exceeds Federal and State action
	Purge Water	Management will allow metal	levels.
	~ 40 gallons	contaminated water to be	
	7/22/94	disposed of in the sewer	
		system.	
021-014MW	Purge Water	Determine whether City of	Analytical results show
	~ 20 gallons	Duluth Wastewater	Trichloroethane exceeds Federal
	7/22/94	Management will allow	and State action levels.
	-	Trichloroethane contaminated	
		water to be disposed of in the	
		sewer system.	

# Table H.1 (Continued) Recommended Disposition of Inspection Derived Waste Minnesota Air National Guard Base Duluth, Minnesota

Drum Indentification	Oriein	Recommended Disposition	Rationale
021-016BH	Drill Cuttings	Dispose of in a landfill which	Analytical results show Nickel
	Soil	accepts Nickel and Lead	and Lead exceed the State action
-	7/14/94	contaminated soil or send to a	levels.
		soil recycler.	
021-025BH	Drill Cuttings	Dispose of in a landfill which	Analytical results show Nickel
	Soil	accepts Nickel contaminated	significantly exceeds the State
	7/12/94	soil or send to a soil recycler.	action level.
021-024BH &	Drill Cuttings	Dispose of in a landfill which	Analytical results show Benzene
021-023BH	Soil	accepts Benzene and TPH	and TPH significantly exceed
	7/12/94	contaminated soil or send to a	Federal and State action level.
		soil recycler.	
021-022BH	Drill Cuttings	Dispose of in a landfill which	Analytical results show Benzene
	Soil	accepts Benzene contaminated	exceeds the State action level.
	7/13/94	soil or send to a soil recycler.	
021-017BH	Drill Cuttings	Dispose of in a landfill which	Analytical results show Nickel
	Soil	accepts Nickel contaminated	significantly exceeds the State
	7/15/94	soil or send to a soil recycler.	action level.
021-020BH	Drill Cuttings	Dispose of in a landfill which	Analytical results show Benzene
	Soil	accepts Benzene contaminated	exceeds the Federal and State
	7/13/94	soil or send to a soil recycler.	action levels.
017-019BH	Drill Cuttings	Dispose of in a landfill which	Analytical results show TPH
	Soil	accepts TPH contaminated	exceeds the State action level.
	7/20/94	soil or send to a soil recycler.	
017-020ВН	Drill Cuttings	Dispose of in a landfill which	Analytical results show TPH
	Soil	accepts TPH contaminated	exceeds the State action level.
	7/20/94	soil or send to a soil recycler.	
017-013BH	Drill Cuttings	Dispose of in a landfill which	Analytical results show TPH
017-012BH	Soil	accepts TPH contaminated	significantly exceeds the State
017-014BH	7/18/94 - 7/19/94	soil or send to a soil recycler.	action level.

ug/L - micrograms per liter mg/L - milligrams per liter

# Table H.1 (Concluded) Recommended Disposition of Inspection Derived Waste Minnesota Air National Guard Base Duluth, Minnesota

Drum		Recommended	The Market of the Control of the Con
Indentification	Origin	Disposition	Rationale .
017-015BH	Drill Cuttings	Dispose of in a landfill which	Analytical results show TPH
	Soil	accepts TPH contaminated	significantly exceeds the State
	7/18/94	soil or send to a soil recycler.	action level.
017-016BH	Drill Cuttings	Dispose of in a landfill which	Analytical results show TPH
	Soil	accepts TPH contaminated	significantly exceeds the State
	7/18/94	soil or send to a soil recycler.	action level.
017-011BH	Drill Cuttings	Dispose of in a landfill which	Analytical results show TPH
	Soil	accepts TPH contaminated	significantly exceeds the State
	7/29/94	soil or send to a soil recycler.	action level.
017-010BH	Drill Cuttings	Dispose of in a landfill which	Analytical results show TPH
	Soil	accepts TPH contaminated	significantly exceeds the State
	7/19/94	soil or send to a soil recycler.	action level.
017-Composite Soil	Composite Soil	Dispose of in a landfill which	Analytical results show TPH
		accepts TPH contaminated	significantly exceeds the State
		soil or send to a soil recycler.	action level.
017-Decontamination Water	Decontamination Water	Determine whether City of	Potential contaminants contacted
	7/18/94 - 7/20/94	Duluth Wastewater	sampling equipment; TPH is the
		Management will allow TPH	only contaminant which
		contaminated water to be	significantly exceeds State action
		disposed of in the sewer	levels.
		system.	
017-018BH	Drill Cuttings	Dispose of in a landfill which	Analytical results show TPH
017-017BH	Soil	accepts TPH contaminated	significantly exceeds the State
	7/19/94 - 7/20/94	soil or send to a soil recycler.	action level.
017-009MW	Purge Water	Determine whether City of	Potential contaminants contacted
	2/28/92	Dufuth Wastewater	sampling equipment; TPH is the
		Management will allow TPH	only contaminant which
		contaminated water to be	significantly exceeds State action
		disposed of in the sewer	levels.
		system.	

Table H.2

# Site Inspection Derived Waste - Drum Containing Soil Cuttings from 017-Composite Soil 148th FG, Duluth Air National Guard Base Duluth, Minnesota

	Maximum Concentration in	Action Level	Standard
Analyte	Soil Cuttings	Concentration mg/kg	See
DOAS			
Acenaphthene	1,000 ug/kg	NA	•
Benzo(a) Anthracene	2,800 ug/kg	NA	1
Benzo(b)Fluoranthene	420 ug/kg	NA VA	ı
Benzo(k)Fluoranthene	2,900 ug/kg	Ϋ́Ν	1
Benzo(a)Pyrene	3,100 ug/kg	NA .	1
Benzo(g,h,i)Perylene	2,000 ug/kg	AN	ı
di-n-Butyl phthalate	430 ug/kg	NA	ı
Carbazole	870 ug/kg	NA	1
Chrysene	3,600 ug/kg	VA V	1
Dibenzofuran	450 ug/kg	NA	ı
bis(2-Ethylhexyl)Phthalate	820 ug/kg	NA	1
Fluoranthene	5,800 ug/kg	AN	1
Indeno(1,2,3-cd)Pyrene	1,800 ug/kg	NA	ı
Naphthalene	400 ug/kg	NA	ı
Phenanthrene	4,900 ug/kg	AN	
Pyrene	4,900 ug/kg	NA	•
HaU			
ТРН	7,700 mg/kg	NA	

Site Inspection Derived Waste - Drum Containing Soil Cuttings from 017-010BH 148th FG, Duluth Air National Guard Base Duluth, Minnesota Table H.3

2.00	T
la el	
Use	1
22	
90	
] /g	
eve]	l
	l⊴
	Z
Ac	
Conc	l
tration in Action Level Standard gs Concentration mg/kg. Used	<u> </u>
i E	
atio	
Maximum Concentration in Action Level Standard Soil Cuttings Concentration mg/kg.	50
ım Concen Soil Cuttin	ıg/k
ଞ୍ଚିଦ୍ର	0.0
<u> </u>	18
Maximu	
2	
	Ш
0.0000000000000000000000000000000000000	
	1 1
2	i i
ulyte PH	
nalyte TPH	
nalyte TPH	
Analyte TPH	Н

Site Inspection Derived Waste - Drum Containing Soil Cuttings from 017-011BH 148th FG, Duluth Air National Guard Base Duluth, Minnesota Table H.4

	Maximum Concentration in	Action Level	Standard
Analyte	Soil Cuttings	Concentration mg/kg	Used
SVOC		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
Acenaphthene	1,000 ug/kg	NA	1
Benzo(a)Anthracene	2,800 ug/kg	NA	,
Benzo(k)Fluoranthene	2,900 ug/kg	NA	,
Benzo(a)Pyrene	3,100 ug/kg	NA	ı
Benzo(g,h,i)Perylene	2,000 ug/kg	NA	,
Carbazole	870 ug/kg	NA	ı
Chrysene	3,600 ug/kg	NA	1
Dibenzofuran	450 ug/kg	NA	ı
Fluoranthene	5,800 ug/kg	NA	1
Indeno(1,2,3-cd)Pyrene	1,800 ug/kg	AN	1
Naphthalene	400 ug/kg	AN	ı
Phenanthrene	4,900 ug/kg	NA	1
Pyrene	4,900 ug/kg	NA	
HdL			
TPH	180 mg/kg	NA	-

Site Inspection Derived Waste - Drum Containing Soil Cuttings from 017-012BH, 017-013BH, & 017-014BH 148th FG, Duluth Air National Guard Base Table H.5

Duluth, Minnesota

Analyte	Maximum Concentration in Soil Cuttings	Action Level Concentration mg/kg	Standard Used
SVOC	(1) "		
Benzo(b)Fluoranthene	420 ug/kg	NA	
di-n-Butyl phthalate	430 ug/kg	ĄN	,
Chrysene	370 ug/kg	NA	,
Fluoranthene	590 ug/kg	₹Z	
Phenanthrene	390 ug/kg	ĄZ.	
Pyrene	640 ug/kg	₹Z	
TPH			
ТРН	3,600 mg/kg	AZ	

ug/L - micrograms per liter mg/L - milligrams per liter

Site Inspection Derived Waste - Drum Containing Soil Cuttings from 017-015BH 148th FG, Duluth Air National Guard Base Duluth, Minnesota Table H.6

Used		NA	300 mg/kg	
Soil Cuttings Concentration mg/kg Used				TVPH
	Used	Concentration mg/kg	Soil Cuttings	

Site Inspection Derived Waste - Drum Containing Soil Cuttings from 017-016BH 148th FG, Duluth Air National Guard Base Duluth, Minnesota Table H.7

7.700 mg/kg

Site Inspection Derived Waste - Drum Containing Soil Cuttings from 017-017BH & 017-018BH 148th FG, Duluth Air National Guard Base Duluth, Minnesota Table H.8

Analyte	Maximum Concentration in Soil Cuttings	Action Level Concentration mg/kg	Standard
SVOC			
bis(2-Ethylhexyl)Phthalate	820 ug/kg	NA	
Fluoranthene	600 ug/kg	ΑN	•
Phenanthrene	470 ug/kg	<b>₹</b> Z	. 1
Pyrene	460 ug/kg	₹ Z	
TPH			
ТРН	260 mg/kg	NA	

Site Inspection Derived Waste - Drum Containing Soil Cuttings from 017-019BH Table H.9

148th FG, Duluth Air National Guard Base Duluth, Minnesota

	T	1	-
		1	
Sylvan.			
110			
nda  Sed		١.	
Stand			i
∥ <b>⊘</b>			
- (115)	J.		
1111112		П	
್ರ ರಿ1	1		
<			
vel mg	1		ı
			ĺ
n L	1	4	
		Z	ĺ
Ac			
=	1		Ì
ರಿ			l
		$\vdash$	
on ii			
1) proof			
=	ļ.,		
		ກດ	
'once Cutti		/k	
55		mg	
$\mathcal{L}_{\mathbf{z}}$		8	
So		-	
Ē			ĺ
axir			
Ĭ			۱
rgullilligi Iosan			I
		j	
lyte			
Analyte	Ħ		
Ana			
Ana			
	ž:	_	
Analyte		田	
		=1	

### Table H.10

## Site Inspection Derived Waste - Drum Containing Soil Cuttings from 017-020BH 148th FG, Duluth Air National Guard Base Duluth, Minnesota

	<del></del>
442	
,	
<b>5</b> 70	
Se	,
	$\vdash$
Ęģ.	
mg	
tion	4
, ,,,,	Z
7.	
	·
1,000	
Sau	5.0
	\X
리	ĮĔ
夏	18
Š	
. 180	
	1
\$ 2. F	1
Z Z	
nalyte	
Ana	
Ana	
Ana	£
Ana	ГРН

ug/L - micrograms per liter mg/L - milligrams per liter

Table H.11
Site Inspection Derived Waste - Drum Containing Soil Cuttings from 021-Composite Soil
148th FG, Duluth Air National Guard Base
Duluth, Minnesota

	Maximum Concentration in	- Action Level	Standard
Analyte	Soll Cuttings	Concentration mg/kg	Used
20A			
Acetone	85 ug/kg	NA	
Benzene	1,100 ug/kg	10	TCLP
2-Butanone	31 ug/kg	NA	1
1,2-Dichloroethane	52 ug/kg	10	TCLP
Ethylbenzene	130 ug/kg	NA	1
Toluene	500 ug/kg	NA	ı
Xylenes (total)	740 ug/kg	NA	ŀ
SVOC			
Acenaphthene	1,000 ug/kg	NA	-
Anthracene	1,900 ug/kg	NA	1
Benzo(a) Anthracene	6,400 ug/kg	NA	1
Benzo(b) Fluoranthene	9,300 ug/kg	NA	ı
Benzo(k)Fluoranthene	4,800 ug/kg	NA	ı
Benzo(a)Pyrene	5,500 ug/kg	NA	,
Benzo(g,h,i)Perylene	3,500 ug/kg	NA	ı
Carbazole	1,500 ug/kg	NA	
Chrysene	7,000 ug/kg	NA	
Fluoranthene	14,000 ug/kg	NA	ı
Fluorene	920 ug/kg	NA	1
Indeno(1,2,3-cd)Pyrene	3,900 ug/kg	NA	-
Phenanthrene	8,800 ug/kg	NA	•
Pyrene	12,000 ug/kg	NA	_
TPH			
ТРН	250 mg/kg	NA	ı
Pesticides			
Aldrin	1.3 ug/kg	NA	
Chlordane(technical)	47 ug/kg	9.0	TCLP 20
Metal			
Aluminum	17,800 mg/kg	NA	,
Arsenic	2 mg/kg	100	TCLP 20
Beryllium	1.0 mg/kg	NA	,
Cadmium	0.8 mg/kg	20	TCLP 20
Chromium	29 mg/kg	100	TCLP 20
Copper	92.6 mg/kg	NA	1
Nickel	31 mg/kg	NA	
Lead	20 mg/kg	100	TCLP 20
Zinc	/ 1 mg/kg	NA	_

Table H.12

## Site Inspection Derived Waste - Drum Containing Purge Water from 021-009MW 148th FG, Duluth Air National Guard Base Duluth, Minnesota

Analyte	Maximum Concentration in Purge Water	Action Level Concentration mg/L	Standard Used
Metal			大田   1   大学ではている。   1   1   1   1   1   1   1   1   1
Aluminum	1.06 mg/L	NA	- The state of the
Cadmium	0.0002 mg/L	1.0	TCLP
Chromium	0.024 mg/L	1.5	TCLP
Copper	0.02 mg/L	. VA	1
Nickel	0.62 mg/L	ĄN	1
Zinc	0.03 mg/L	AN	1

ug/L - micrograms per liter mg/L - milligrams per liter

Site Inspection Derived Waste - Drum Containing Purge Water from 021-010MW 148th FG, Duluth Air National Guard Base Duluth, Minnesota Table H.13

Analyte	Maximum Concentration in Purge Water	Action Level Concentration mg/L	Standard
Metal			
Aluminum	3.00 mg/L	NA	
Cadmium	0.0002 mg/L	1.0	TCLP
Chromium	0.004 mg/L	1.5	TCLP
Copper	0.02 mg/L	NA	,
Nickel	0.012 mg/L	Ϋ́Z	1
Zinc	0.02 mg/L	NA	•

Site Inspection Derived Waste - Drum Containing Purge Water from 021-014MW 148th FG, Duluth Air National Guard Base Duluth, Minnesota Table H.14

Analyte	Maximum Concentration in Soil Cuttings	Action Level	Standard
DOAS			
Trichloroethane	T/8n 89	0.5	TCLP
Metal			
Aluminum	17.1 mg/L	NA	1
Cadmium	0.0003 mg/L	1.0	TCLP
Chromium	0.025 mg/L	5.0	TCLP
Copper	0.17 mg/L	NA	ı
Nickel	0.051 mg/L	NA	ı
Zinc	0.07 mg/L	NA	1

Site Inspection Derived Waste - Drum Containing Soil Cuttings from 021-015BH 148th FG, Duluth Air National Guard Base Duluth, Minnesota Table H.15

	Maximum Concentration in	Action Level	Standard
Analyte	Soil Cuttings	Concentration mg/kg	
TPH			
TPH	16 mg/kg	NA	
Metal		是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是	
Aluminum	14,400 mg/kg	NA	
Arsenic	2 mg/kg	100	TCLP 20
Chromium	29 mg/kg	100	TCLP 20
Copper	55.2 mg/kg	NA	1
Nickel	27 mg/kg	NA	•
Lead	4.3 mg/kg	100	TCLP 20
Zinc	52 mg/kg	NA	1

Site Inspection Derived Waste - Drum Containing Soil Cuttings from 021-016BH 148th FG, Duluth Air National Guard Base Duluth, Minnesota Table H.16

	Maximum Concentration in	Action Level	Standard
Analyte	Soil Cuttings	Concentration mg/kg	Used
30A			
Acetone	13 ug/kg	NA	
HdW			
ТРН	67 mg/kg	NA	1
Metal			
Aluminum	10,500 mg/kg	NA	t
Cadmium	2 mg/kg	100	TCLP 20
Chromium	26 mg/kg	100	TCLP 20
Copper	50.2 mg/kg	NA	1
Nickel	25 mg/kg	NA	1
Lead	6.9 mg/kg	100	TCLP 20
Zinc	56 mg/kg	NA	1

ug/L - micrograms per liter mg/L - milligrams per liter

Site Inspection Derived Waste - Drum Containing Soil Cuttings from 021-017BH 148th FG, Duluth Air National Guard Base Duluth, Minnesota Table H.17

	Maximum Concentration in	Action Level	Standard
Analyte	Soil Cuttings	Concentration mg/kg	Dsed
HdL			
ТРН	86 mg/kg	AN	
Metal			
Aluminum	11,400 mg/kg	NA	
Arsenic	1 mg/kg	100	TCLP 20
Chromium	21 mg/kg	100	TCLP 20
Copper	64.6 mg/kg	NA	ı
Nickel	25 mg/kg	NA	,
Lead	3.9 mg/kg	100	TCLP 20
Zinc	47 mg/kg	NA	,

Site Inspection Derived Waste - Drum Containing Soil Cuttings from 021-018BH 148th FG, Duluth Air National Guard Base Duluth, Minnesota Table H.18

	Maximum Concentration in	Action Level	Standard
Analyte	Soil Cuttings	Concentration mg/kg	Used
ZOAS			
Acenaphthene	1,000 ug/kg	NA	
Anthracene	1,900 ug/kg	NA	1
Benzo(a)Anthracene	6,400 ug/kg	NA	ı
Benzo(b)Fluoranthene	9,300 ug/kg	NA	ı
Benzo(k)Fluoranthene	4,800 ug/kg	NA	,
Benzo(a)Pyrene	5,500 ug/kg	NA	ı
Benzo(g,h,i)Perylene	3,500 ug/kg	NA	ı
Carbazole	1,500 ug/kg	NA	1
Chrysene	7,000 ug/kg	NA	1
Fluoranthene	14,000 ug/kg	NA	1
Fluorene	920 ug/kg	NA	ı
Indeno(1,2,3-cd)Pyrene	3,900 ug/kg	NA	1
Phenanthrene	8,800 ug/kg	NA	1
Pyrene	12,000 ug/kg	NA	-
TPH			
ТРН	125 mg/kg	NA	•
Metal			
Aluminum	11,000 mg/kg	NA	1
Arsenic	l mg/kg	100	TCLP 20
Chromium	29 mg/kg	100	TCLP 20
Copper	77.9 mg/kg	NA	•
Nickel	27 mg/kg	NA	•
Lead	16 mg/kg	100	TCLP 20
Zinc	55 mg/kg	NA	-

ug/L - micrograms per liter mg/L - milligrams per liter

Site Inspection Derived Waste - Drum Containing Soil Cuttings from 021-019BH 148th FG, Duluth Air National Guard Base Duluth, Minnesota Table H.19

VALUE Y	Maximum Concentration in	Action Level	Standard
Allalyle	Son Currings	Concentration mg/kg	Used
NOC.			
Benzene	17 ug/kg	10	
TPH			07 1701
ТРН	30 mg/kg	AN AN	
Metal			
Aluminum	12,600 mg/kg	NA	
Arsenic	1 mg/kg	100	TCI P 20
Chromium	24 mg/kg	100	TCI P 20
Copper	56.5 mg/kg	NA AN	,
Nickel	25 mg/kg	NA	ı
Lead	4.0 mg/kg	001	TCLP 20
Zinc	67 mg/kg	NA	

Site Inspection Derived Waste - Drum Containing Soil Cuttings from 021-020BH Table H.20

Duluth, Minnesota

148th FG, Duluth Air National Guard Base

+ Analyte	Maximum Concentration in Soil Cuttings	Action Level Concentration mg/kg	Standard Used
λος νος	, 1000 1000 1000 1000 1000 1000 1000 10		
Acetone	85 ug/kg	NA	
Benzene	140 ug/kg	10	TCLP 20
2-Butanone	31 ug/kg	NA	
Toluene	14 ug/kg	NA	-
HdL			(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
ТРН	50 mg/kg	NA	
Metal			
Aluminum	10,000 mg/kg	NA	
Cadmium	0.28 mg/kg	20	TCLP 20
Chromium	10 mg/kg	100	TCLP 20
Copper	58.2 mg/kg	NA	-
Nickel	18 mg/kg	NA	,
Lead	3.6 mg/kg	100	TCLP 20
Zinc	40 mg/kg	NA	-

ug/L - micrograms per liter mg/L - milligrams per liter

Site Inspection Derived Waste - Drum Containing Soil Cuttings from 021-021BH 148th FG, Duluth Air National Guard Base Duluth, Minnesota Table H.21

Analyte	Maximum Concentration in Soil Cuttings	Action Level Concentration mg/kg	Standard Used
Λος			
Benzene	47 ug/kg	10	TCLP 20
Ethylbenzene	8 ug/kg	ŊĄ	ı
Toluene	19 ug/kg	NA	ı
Xylenes (total)	34 ug/kg	NA	•
TPH			
ТРН	140 mg/kg	NA	1
Metal			
Aluminum	11,000 mg/kg	NA	ł
Arsenic	1 mg/kg	100	TCLP 20
Cadmium	0.09 mg/kg	20	TCLP 20
Chromium	12 mg/kg	100	TCLP 20
Copper	92.6 mg/kg	NA	ı
Nickel	20 mg/kg	NA	ı
Lead	3.0 mg/kg	100	TCLP 20
Zinc	71 mg/kg	NA	ı

Table H.22

## Site Inspection Derived Waste - Drum Containing Soil Cuttings from 021-022BH 148th FG, Duluth Air National Guard Base Duluth, Minnesota

Analyte	Maximum Concentration in Soil Cuttings	Action Level Concentration mg/kg	Standard Used
V0C			
Benzene	120 ug/kg	10	TCLP 20
1,2-Dichloroethane	5 ug/kg	10	TCLP 20
Ethylbenzene	130 ug/kg	NA	1
Toluene	500 ug/kg	NA	-
Xylenes(total)	740 ug/kg	NA	1

ug/L - micrograms per liter mg/L - milligrams per liter

Site Inspection Derived Waste - Drum Containing Soil Cuttings from 021-023BH & 021-024BH 148th FG, Duluth Air National Guard Base Table H.23

Duluth, Minnesota

	Maximum Concentration in	Action Level	Standard
Analyte	Soil Cuttings	Concentration mg/kg	Used
VOC			
Acetone	38 ug/kg	NA	ľ
Benzene	1,100 ug/kg	10	TCLP 20
1,2-Dichloroethane	52 ug/kg	10	TCLP 20
Ethylbenzene	110 ug/kg	NA	1
Toluene	350 ug/kg	NA	ı
Xylenes(total)	370 ug/kg	NA	ı
SVOC			
Benzo(a)Anthracene	690 ug/kg	NA	ı
Benzo(k)Fluoranthene	1,200 ug/kg	NA	ı
Benzo(a)Pyrene	760 ug/kg	NA	1
Benzo(g,h,i)Perylene	610 ug/kg	NA	ı
Chrysene	860 ug/kg	NA	ı
Fluoranthene	1,500 ug/kg	NA	ı
Indeno(1,2,3-cd)Pyrene	530 ug/kg	NA	ı
Phenanthrene	990 ug/kg	NA	1
Pyrene	1,500 ug/kg	NA	ı
TPH			
ТРН	190 mg/kg	NA	7
Pesticides			
Chlordane(technical)	47 ug/kg	0.6	TCLP 20
Metal			
Aluminum	17,800 mg/kg	NA	
Arsenic	2 mg/kg	100	TCLP 20
Beryllium	1.0 mg/kg	NA	ı
Cadmium	0.20 mg/kg	20	TCLP 20
Chromium	29 mg/kg	100	TCLP 20
Copper	61.6 mg/kg	NA	1
Nickel	30 mg/kg	NA	ı
Lead	20 mg/kg	100	TCLP 20
Zinc	67 mg/kg	NA	1

BH - Borehole ug/kg - micrograms per kilogram mg/kg - milligrams per kilogram

ug/L - micrograms per liter mg/L - milligrams per liter

Site Inspection Derived Waste - Drum Containing Soil Cuttings from 021-025BH 148th FG, Duluth Air National Guard Base Duluth, Minnesota Table H.24

Analyte	Maximum Concentration in Soil Cuttings	Action Level Concentration morks	Standard
HAL		O O	
ТРН	15 mg/kg	NA	-
Metal			
Aluminum	13,000 mg/kg	NA	
Arsenic	1 mg/kg	100	TCLP 20
Beryllium	1.0 mg/kg	AN	ı
Chromium	26 mg/kg	100	TCLP 20
Copper	67 mg/kg	AN	1
Nickel	31 mg/kg	NA	1
Lead	5.0 mg/kg	100	TCLP 20
Zinc	54 mg/kg	NA	,

Site Inspection Derived Waste - Drum Containing Purge Water and Development Water from 021-026MW 148th FG, Duluth Air National Guard Base Table II.25

Duluth, Minnesota

	Purge Water	Action Level Concentration mg/L	Standard Used
Metal			
Aluminum	2.96 mg/L	NA	
Cadmium	0.0004 mg/L	1.0	TCLP
Chromium	0.004 mg/L	1.5	TCLP
Copper	0.03 mg/L	Ϋ́Z	,
Nickel	0.046 mg/L	NA	•
Zinc	0.02 mg/L	NA	1

### APPENDIX I DATA VALIDATION

THIS PAGE INTENTIONALLY LEFT BLANK

### SECTION I.1 INTRODUCTION

This appendix contains the data validation of the soil, water, and sediment samples that were taken during the Addendum 1 RCRA Facility Investigation at the Minnesota Air National Guard Base, Duluth, Minnesota. A summary of the data validation follows.

THIS PAGE INTENTIONALLY LEFT BLANK



### **OPERATIONAL TECHNOLOGIES**

CORPORATION

November 21, 1994

Karen Satterfield Southern Petroleum Laboratories P.O.Box 20807 Houston, Texas 77225

(713) 660-0901

FAX: (713) 660-8975

Dear Karen,

The following is a brief summary of some analytical issues questioned on the Duluth Air National Guard Project in Minnesota completed in the beginning in October. Please review the following questions and feel free to contact me for any questions regarding the validation at (210) 731-0000 (ext. 188).

Sincerely,

Mark Escobar **Project Chemist** 

Enclosure: As stated



### OPERATIONAL TECHNOLOGIES

CORPORATION

### Questions Regarding Validation on Duluth Air National Guard Site Investigation Duluth, Minnesota 1308-101 Southern Petroleum Laboratories, Houston Texas

*General*: Sample 017-010 BH 0.5'-1.0' (Lab ID# 9410269-01) needs to be corrected from 10/4/94 to 10/6/94 on Date Sampled listed on the Report Form.

### Pesticide/PCB (SW 8080)

1. The following samples were not provided with Raw Data/Chromatograms:

021-RB07

Lab ID# 9410180-08

DANGB-FB01

Lab ID# 9410269-08

DANGB-FB02

Lab ID# 9410269-09

### Duluth Air National Guard Site Investigation Duluth, Minnesota 1308-101-S002 Southern Petroleum Laboratories, Houston, Texas Data Validation Brief Summary

### SAMPLE:

### WATER

017-RB03

Lab ID# 9407813-01

SVOA/SW8270 =

*No hits were detected above assigned detection limits.

*Met 7 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*No hits were detected above the detection limit of 0.5 mg/L.

*Raw Data/chromatogram and surrogate recovery was not provided.

SAMPLE:

SOIL

017-018 BH 1.5'-2'

Lab ID# 9407813-02

SVOA/SW8270 =

*Hits were detected on Phenanthrene at 470 mg/kg and on Pyrene at 460

mg/kg with detection limits of 330 mg/kg.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit at 260 mg/kg with a detection limit of 10 mg/kg.

*Raw data/Chromatogram or surrogate recovery was not provided.

017-018 BH 5'-5.5'

Lab ID# 9407813-03

SVOA/SW8270 =

*No hits were detected above assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

*An initial 2x dilution was performed on this analysis.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit at 250 mg/kg was detected above the detection limit of 10 mg/kg.

*Raw data/Chromatogram or surrogate recovery was not provided.

017-018 BH 5.5'-6'

Lab ID# 9407813-04

SVOA/SW8270 =

*No hits were detected above assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

*An initial 5x and a secondary 20x dilution was performed due to one

internal standard being outside QC limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 27 mg/kg with a detection limit of 10 mg/kg. *Raw Data/Chromatogram and surrogate recovery was not provided.

SAMPLE:

SOIL

017-018 BH 9'-9.5'

Lab ID# 9407813-05

SVOA/SW8270 =

*No hits were detected above assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*A hit was detected at 12 mg/kg with a detection limit of 10 mg/kg.

*Raw Data/Chromatogram or surrogate recovery was not provided.

SAMPLE:

SOIL

017-019 BH 2'-2.5'

Lab ID# 9407813-06

SVOA/SW8270 =

*No hits were detected above assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit at 99 mg/kg with a detection limit of 10 mg/kg.

*Raw Data/Chromatogram or surrogate recovery was not provided for.

017-019 BH 5'-5.5'

Lab ID# 9407813-07

SVOA/SW8270 =

*No hits were detected above assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*No hits were above the detection limit of 10 mg/kg.

*Raw Data/Chromatogram or surrogate recovery was not provided.

SOIL

017-019 BH 9'-9.5'

Lab ID# 9407813-08

SVOA/SW8270 =

*No hits were detected above assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was at 14 mg/kg with a detection limit of 10 mg/kg.

*Raw Data/Chromatogram and surrogate recovery was not provided for.

SOIL

017-020 BH 1.5'-2'

Lab ID# 9407813-09

SVOA/SW8270 =

*No hits were detected above assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 24 mg/kg with a detection limit of 10 mg/kg.

*Raw Data/Chromatogram and surrogate recovery was not provided for.

017-020 BH 5'-5.5'

Lab ID# 9407813-10

SVOA/SW8270 =

*No hits were detected above assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

*An initial 5x dilution was performed on this analysis.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 110 mg/kg with a detection limit of 10 mg/kg.

*Raw Data/Chromatogram and surrogate recovery was not provided for.

017-020 BH 9'-9.5'

Lab ID# 9407813-11

SVOA/SW8270 =

*No hits were detected above assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 29 mg/kg with a detection limit of 10 mg/kg.

*Raw Data/Chromatogram and surrogate recovery was not provided for.

## WATER

017-RB 02

Lab ID# 9407703-01

SVOA/SW8270 =

*No hits were detected above assigned detection limits.

*Met 7 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*No hit was detected above the assigned detection limit of 0.5 mg/kg. *Raw Data/Chromatogram and surrogate recovery was not provided for.

017-014 BH 1.5'-2'

Lab ID# 9407703-02

SVOA/SW8270 =

*No hits were detected above assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

*An initial 10x dilution was performed for this analysis.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 3600 mg/kg with a detection limit of 10 mg/kg.

*Raw Data/Chromatogram and surrogate recovery was not provided for.

SOIL

017-014 BH 5'-5.5'

Lab ID# 9407703-03

SVOA/SW8270 =

*No hits were detected above assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 350 mg/kg with a detection limit of 10 mg/kg.

*Raw Data/Chromatogram and surrogate recovery was not provided for.

017-014 BH 5.5'-6'

Lab ID# 9407703-04

SVOA/SW8270 =

*No hits were detected above assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 49 mg/kg with a detection limit of 10 mg/kg.

*Raw Data/Chromatogram and surrogate recovery was not provided for.

SOIL

017-014 BH 9'-9.5'

Lab ID# 9407703-05

SVOA/SW8270 =

*No hits were detected above assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 17 mg/kg with a detection limit of 10 mg/kg.

*Raw Data/Chromatogram and surrogate recovery was not provided for.

017-012 BH 2'-2.5'

Lab ID# 9407703-06

SVOA/SW8270 =

*No hits were detected above assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 190 mg/kg with a detection limit of 10 mg/kg.

*Raw Data/Chromatogram and surrogate recovery was not provided for.

017-012 BH 5'-5.5'

Lab ID# 9407703-07

SVOA/SW8270 =

*No hits were detected above assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 13 mg/kg with a detection limit of 10 mg/kg.

*Raw Data/Chromatogram and surrogate recovery was not provided for.

017-011 BH 1.5'-2'

Lab ID# 9407703-08

#### SVOA/SW8270 =

*Hits were detected at 1000 ug/kg for Acenapthalene, 2800 ug/kg for Benzo(a)Anthracene, 2900 ug/kg for Benzo(k)Fluoroanthene, 3100 ug/kg for Benzo(a)Pyrene, 2000 ug/kg for Benzo(g,h,i)Perylene, 870 ug/kg for Carbazole, 3600 ug/kg for Chrysene, 450 ug/kg for Dibenzofuran, 1800 ug/kg for Ideno(1,2,3-cd)Pyrene, and 400 ug/kg for Naphthalene that all had detection limits of 330 ug/kg. Also, Fluoranthene had a hit at 5800 ug/kg, Phenanthrene and Pyrene with a hits at 4900 ug/kg and all three having detection limits of 3300 ug/kg.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

*A 10x dilution was performed on this analysis.

### TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 180 mg/kg with a detection limit of 10 mg/kg.

*Raw data/Chromatogram and surrogate recovery was not provided for.

017-011 BH 5'-5.5'

Lab ID# 9407703-09

SVOA/SW8270 =

*No hits were detected above assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 25 mg/kg with a detection limit of 10 mg/kg.

*Raw data/Chromatogram and surrogate recovery was not provided for.

017-010 BH 5'-5.5'

Lab ID# 9407703-10

SVOA/SW8270 =

*No hits were detected above assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 25 mg/kg with a detection limit of 10 mg/kg.

*Raw data/Chromatogram and surrogate recovery was not provided for.

017-010 BH 5.5'-6'

Lab ID# 9407703-11

SVOA/SW8270 =

*No hits were detected above assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 22 mg/kg with a detection limit of 10 mg/kg.

*Raw Data/Chromatogram and surrogate recovery was not provided for.

017-010 BH 9'-9.5'

Lab ID# 9407703-12

SVOA/SW8270 =

*No hits were detected above assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*No hit was detected at the detection limit of 10 mg/kg.

*Raw data/chromatogram and surrogate recovery was not provided for.

SOIL

017-017 BH 2'-2.5'

Lab ID# 9407703-13

SVOA/SW8270 =

*No hits were detected above assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 140 mg/kg with a detection limit of 10 mg/kg.
*Raw data/Chromatogram and surrogate recovery was not provided for.

017-017 BH 5'-5.5'

Lab ID# 9407703-14

SVOA/SW8270 =

*Hit was detected on Bis(2-ethylhexyl)phthalate at 820 mg/kg with a

detection limit of 330 ug/kg.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 210 mg/kg with a detection limit of 10 mg/kg.

*Raw data/Chromatogram and surrogate recovery was not provided for.

SOIL

017-017 BH 9'-9.5'

Lab ID# 9407703-15

SVOA/SW8270 =

*No hits were detected above assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 110 mg/kg with a detection limit of 10 mg/kg.

*Raw data/Chromatogram and surrogate recovery was not provided for.

021-017 BH 1.5'-2'

Lab ID# 9407612-01

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *Clean, No hits above the detection limits assigned.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit at 86 mg/kg with detection limit of 10 mg/kg.

*Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS

SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, As, Be, Cd, Hg, Sb, Se, and Tl. Other elements were detected above the stated

detection limits.

*All met 6 month holding times.

021-017 BH 6'-6.5'

Lab ID# 9407612-02

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *Clean, No hits above the detection limits assigned.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit at 14 mg/kg with detection limit of 10 mg/kg.

*Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS

SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, Be, Cd, Hg, Sb, Se, and Tl. Other elements were detected above the stated

detection limits.

*All met 6 month holding times. *COC information verified.

021-017 BH 6.5'-7'

Lab ID# 9407612-03

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *Clean, No hits above the detection limits assigned.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*No hit detected above the detection limit of 10 mg/kg.

*Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS

SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, Be, Cd, Hg, Sb, Se, and Tl. Other elements were detected above the stated

detection limits.

*All met 6 month holding times.

021-017 BH 14'-14.5'

Lab ID# 9407612-04

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *Clean, No hits above the detection limits assigned.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit at 22 mg/kg with a detection limit of 10 mg/kg.

*Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS

SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, As,

Be, Cd, Hg, Sb, Se, and Tl. Other elements were detected above the stated

detection limits.

*All met 6 month holding times.

#### WATER

021-RB 03

Lab ID# 9407612-05

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*All met 7 day holding time. *COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 7 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *Clean, No hits above the detection limits assigned.

*Met 7 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

*Raw data/Chromatograms were not provided for.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*No hit above the detection limit of 0.5 mg/L.

*Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

**METALS** 

SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, Al, As, Be, Cd, Cr, Hg, Pb, Sb, Se, and Tl. Other elements were detected above

the stated detection limits.

*All met 6 month holding times.

WATER

021-TB 03

Lab ID# 9407612-05

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*All met 7 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

## WATER

021-026MW-GW02

Lab ID# 9407971-01

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*All met 7 day holding time. *COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

METALS SW6010/7000=

*The Elements that were not detected above the detection limit were As, Be, Hg, Pb, Sb, Se, and Tl. Other elements were detected above the stated

detection limits.

*All met 6 month holding times. *COC information verified.

#### WATER

021-RB05

Lab ID# 9407971-02

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*All met 7 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 7 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *Clean, No hits above the detection limits assigned.

*Met 7 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

*Raw data/Chromatograms were not provided for.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*No hit above the detection limit of 0.5 mg/L.

*Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

**METALS** 

SW6010/7000=

*The Elements that were not detected above the detection limit were Al, As,

Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, and Tl. Other elements were detected

above the stated detection limits.
*All met 6 month holding times.
*COC information verified.

WATER

018-FB01

Lab ID# 9407971-03

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*All met 7 day holding time. *COC information verified.

*All surrogate recoveries were within QC limits.
*Blanks were clean and no compounds were detected above the detection

limits.

WATER

018-RB01

Lab ID# 9407971-04

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*All met 7 day holding time. *COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

WATER

018-TB01

Lab ID# 9407971-05

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*All met 7 day holding time. *COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection limits.

## WATER

017-FB01

Lab ID# 9407971-06

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.
*Met 7 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*No hit above the detection limit of 0.5 mg/L.

*Raw data/Chromatogram and surrogate recovery was not provided for.

017-13 BH 1.5'-2'

Lab ID# 9407680-01

SVOA/SW8270 =

*Hits on Benzo(b)Fluoroanthene at 420 ug/kg, Chrysene at 370 ug/kg, Fluoranthene at 590 ug/kg, Phenanthrene at 390 ug/kg, and Pyrene at 640 ug/kg with detection limits of 330 ug/kg.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit at 275 mg/kg with the detection limit of 10 mg/kg.

*Raw data/Chromatogram and surrogate recovery was not provided for.

SOIL

017-13 BH 5'-5.5'

Lab ID# 9407680-02

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit at 370 mg/kg with the detection limit of 10 mg/kg.

*Raw data/Chromatogram and surrogate recovery was not provided for.

017-13 BH 9'-9.5'

Lab ID# 9407680-03

SVOA/SW8270 =

*Hit on Di-n-butyl phthalate was detected at 430 ug/kg with a detection limit

of 330 ug/kg

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit at 34 mg/kg with the detection limit of 10 mg/kg.

*Raw data/Chromatogram and surrogate recovery was not provided for.

017-15 BH 2'-2.5'

Lab ID# 9407680-04

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.
*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

*A 2x dilution was performed on this analysis.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit at 300 mg/kg with the detection limit of 10 mg/kg.

*Raw data/Chromatogram and surrogate recovery was not provided for.

SOIL

017-15 BH 5.5'-6'

Lab ID# 9407680-05

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

*A 2x dilution was performed on this analysis.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit at 110 mg/kg with the detection limit of 10 mg/kg.

*Raw data/Chromatogram and surrogate recovery was not provided for.

017-15 BH 9.5'10'

Lab ID# 9407680-06

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.
*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

*A 2x dilution was performed on this analysis.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit at 22 mg/kg with the detection limit of 10 mg/kg.

*Raw data/Chromatogram and surrogate recovery was not provided for.

017-16 BH 1.5'-2'

Lab ID# 9407680-07

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

*A 5x dilution was performed on this analysis.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit at 7700 mg/kg with the detection limit of 200 mg/kg. A 20x dilution was

performed.

*Raw data/Chromatogram and surrogate recovery was not provided for.

# SAMPLE:

# SOIL

017-16 BH 5.0'-5.5'

Lab ID# 9407680-08

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.
*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit at 270 mg/kg with the detection limit of 10 mg/kg.

*Raw data/Chromatogram and surrogate recovery was not provided for.

017-16 BH 9'-9.5'

Lab ID# 9407680-09

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit at 22 mg/kg with the detection limit of 10 mg/kg.

*Raw data/Chromatogram and surrogate recovery was not provided for.

SAMPLE:

SOIL

017-13 BH 9'-9.5' MS

Lab ID# 9407680-10

SVOA/SW8270 =

*All spiked compounds were detected.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were not within QC Limits due to matrix interference.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Spiked compound hit at 430 mg/kg with the detection limit of 10 mg/kg. *Raw data/Chromatogram and surrogate recovery was not provided for.

017-13 BH 9'-9.5' MSD Lab ID# 9407680-11

SVOA/SW8270 =

*All spiked compounds were detected.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were not within QC Limits due to matrix interference. 8 out of

11 RPD's were out of QC limits due to matrix interference. *Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Spiked compound hit at 430 mg/kg with the detection limit of 10 mg/kg.

RPD within QC Criteria.

*Raw data/Chromatogram and surrogate recovery was not provided for.

## SAMPLE:

#### WATER

017-RB 01

Lab ID# 9407680-12

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.
*Met 7 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*No hit was detected above the detection limit of 0.5 mg/l.

*Raw data/Chromatogram and surrogate recovery was not provided for.

021-022 BH 14'-14.5'

Lab ID# 9407405-03

VOA/SW8240 =

*Hits on Benzene at 79 ug/kg, Toluene at 6 ug/kg, and Total Xylenes at 18

mg/kg.

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

*No Raw data/Chromatograms were provided for validation.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.
*No Raw data/Chromatograms were provided for validation.

PEST/SW8080 = *No hits above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*No hit above the detection limit of 10 mg/kg.

*Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

**METALS** 

SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, Cd, Hg, Sb, Se, and Tl. Other elements were detected above the stated detection

limits.

021-023 BH 1.5'-2'

Lab ID# 9407405-04

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

*No Raw data/Chromatograms were provided for validation.

SVOA/SW8270 =

*Hits on Benzo(a)Anthracene at 690 ug/kg, Benzo(k)Fluoroanthene at 1200 ug/kg, Benzo(a)Pyrene at 760 ug/kg, Benzo(g,h,i)Perylene at 610 ug/kg, Chrysene at 860 ug/kg, Fluoranthene at 1500 ug/kg, Ideno(1,2,3-cd)Pyrene at 530 ug/kg, Phenanthrene at 990 ug/kg, and Pyrene at 1500 ug/kg.
*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.
*No Raw data/Chromatograms were provided for validation.

PEST/SW8080 = *Hit on Chlordane at 47 ug/kg with the detection limit of 8.5 ug/kg.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit at 190 mg/kg with a detection limit of 10 mg/kg.

*Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

**METALS** 

SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, As, Cd, Hg, Sb, Se, and Tl. Other elements were detected above the stated

detection limits.

021-023 BH 11'-11.5'

Lab ID# 9407405-05

VOA/SW8240 =

*Hit on Benzene at 170 ug/kg with the detection limit of 25 ug/kg. The report shows hits on Acetone at 38 ug/kg, 1,2-Dichloroethene at 33 ug/kg, Ethylbenzene at 9 ug/kg, Toluene at 33 ug/kg, and Total xylenes at 33 ug/kg but the quantitative report on the raw data shows no such hits?

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *Hit on Chlordane at 47 ug/kg with the detection limit of 8.5 ug/kg.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*No hit was detected above the detection limit of 10 mg/kg.

*Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, Cd, Hg, Sb, Se, and Tl. Other elements were detected above the stated detection

limits

021-023 BH 11.5'-12'

Lab ID# 9407405-06

VOA/SW8240 =

*Hit on Benzene at 630 ug/kg and 1,2-Dichloroethane at 39 ug/kg.

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit at 12 ug/kg was detected above the detection limit of 10 mg/kg.
*Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS

SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, As,

Cd, Hg, Sb, Se, and Tl. Other elements were detected above the stated

detection limits.

021-023 BH 14'-14.5'

Lab ID# 9407405-07

VOA/SW8240 =

*Hit on Benzene at 1100 ug/kg, 1,2-Dichloroethane at 52 ug/kg, Ethylbenzene at 110 ug/kg, Toluene at 350 ug/kg, and Total Xylenes at 370 ug/kg.

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit at 18 ug/kg was detected above the detection limit of 10 mg/kg. *Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS

SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, Cd, Hg, Sb, Se, and Tl. Other elements were detected above the stated detection limits.

021-025 BH 1.5'-2'

Lab ID# 9407405-08

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit at 15 ug/kg was detected above the detection limit of 10 mg/kg.
*Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS

SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, Cd, Hg, Sb, Se, and Tl. Other elements were detected above the stated detection

limits.

021-025 BH 10'-10.5'

Lab ID# 9407405-09

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit at 15 ug/kg was detected above the detection limit of 10 mg/kg. *Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, Cd, Hg, Sb, Se, and Tl. Other elements were detected above the stated detection

limits.

*All met 6 month holding times.

*COC information verified.

021-025 BH 14'-14.5'

Lab ID# 9407405-10

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit at 15 ug/kg was detected above the detection limit of 10 mg/kg. *Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS

SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, As, Cd, Hg, Sb, Se, and Tl. Other elements were detected above the stated

detection limits.

## 021-025BH 14'-14.5'MS Lab ID# 9407405-11

VOA/SW8240 =

*All spiked compounds were detected within spiked amounts.

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*All spiked compounds were detected within spiked amounts.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *All spiked compounds were recovered within spiked amounts.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Spiked compound recovered at 420 ug/kg.

*Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

**METALS** 

SW6010/7000=

*Antimony was the only element that was not recovered within Spiked

amount recovery.

## 021-025BH 14'-14.5'MSD Lab ID# 9407443-12

VOA/SW8240 =

*All spiked compounds were detected within spiked amounts. All RPD's

were within QC Criteria.
*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*All spiked compounds were detected within spiked amounts. All RPD's

were within QC Criteria.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *All spiked compounds were recovered within spiked amounts. All RPD's were within QC Criteria.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Spiked compound recovered at 410 ug/kg. RPD was within QC Limits. *Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

**METALS** 

SW6010/7000=

*All spiked elements were recovered within spiked amounts. RPD's were

within QC Criteria.

SAMPLE:

## WATER

021-TB1

Lab ID# 9407443-13

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.

*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

021-015 BH 1.5'-2'

Lab ID# 9407566-01

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit at 16 ug/kg was detected above the detection limit of 10 mg/kg. *Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, Be,

Cd, Hg, Sb, Se, and Tl. Other elements were detected above the stated

detection limits.

021-015 BH 6'-6.5'

Lab ID# 9407566-02

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit at 15 ug/kg was detected above the detection limit of 10 mg/kg.
*Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS

SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, Be, Cd, Hg, Sb, Se, and Tl. Other elements were detected above the stated

detection limits.

*All met 6 month holding times.

*COC information verified.

021-016 BH 1.5'-2'

Lab ID# 9407566-03

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time. *COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit at 67 ug/kg was detected above the detection limit of 10 mg/kg.
*Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS

SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, As, Be, Cd, Hg, Sb, Se, and Tl. Other elements were detected above the stated

detection limits.

021-016 BH 6'-6.5'

Lab ID# 9407566-04

VOA/SW8240 =

*Hit on Acetone at 13 ug/kg with the detection limit of 10 ug/kg.

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*No hit was detected above the detection limit of 10 mg/kg.

*Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

**METALS** 

SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, Be, Cd, Hg, Sb, Se, and Tl. Other elements were detected above the stated

detection limits.

021-018 BH 1.5'-2'

Lab ID# 9407566-05

VOA/SW8240 =

*No hit was detected above the assigned detection limits.

*All met 14 day holding time. *COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*Hits on Acenapthene at 1000 ug/kg, Anthracene at 1900 ug/kg, Benzo(a)Anthracene at 6400 ug/kg, Benzo(b)Fluoranthene at 9300 ug/kg, Benzo(k)fluorathene at 4800 ug/kg, Benzo(a)Pyrene at 5500 ug/kg, Benzo(g,h,i)Perylene at 3500 ug/kg, Carbazole at 1500 ug/kg, Chrysene at 7000 ug/kg, Fluorathene at 14000 ug/kg, Fluorene at 920 ug/kg, Indeno(1,2,3-cd)pyrene at 3900 ug/kg, Phenanthrene at 8800 ug/kg, Pyrene at 12000 ug/kg.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

*An initial dilution of 2x was performed along with a continuing dilution of

10x due to matrix interference.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 125 mg/kg with a detection limit of 10 mg/kg.

*Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, As, Be, Cd, Hg, Sb, Se, and Tl. Other elements were detected above the stated

detection limits.

021-018 BH 10'-10.5'

Lab ID# 9407566-06

VOA/SW8240 =

*No hit was detected above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit detected at 15 mg/kg that was above the detection limit of 10 mg/kg. *Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, Be,

Cd, Hg, Sb, Se, and Tl. Other elements were detected above the stated

detection limits.

021-018 BH 14'-14.5'

Lab ID# 9407566-07

VOA/SW8240 =

*No hit was detected above the assigned detection limits.

*All met 14 day holding time. *COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit detected at 28 mg/kg that was above the detection limit of 10 mg/kg. *Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS

SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, Be,

Cd, Hg, Sb, Se, and Tl. Other elements were detected above the stated

detection limits.

021-018 BH 14.5'-15'

Lab ID# 9407566-08

VOA/SW8240 =

*No hit was detected above the assigned detection limits.

*All met 14 day holding time. *COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit detected at 13 mg/kg that was above the detection limit of 10 mg/kg.
*Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

**METALS** 

SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, As, Be, Cd, Hg, Sb, Se, and Tl. Other elements were detected above the stated

detection limits.

*All met 6 month holding times.

*COC information verified.

021-019 BH 1.0'-1.5' Lab ID# 9407566-09 *Sample ID need to be corrected to read COC.

VOA/SW8240 =

*No hit was detected above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit detected at 25 mg/kg that was above the detection limit of 10 mg/kg. *Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

**METALS** 

SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, Be, Cd, Hg, Sb, Se, and Tl. Other elements were detected above the stated

detection limits.

021-019 BH 6'-6.5'

Lab ID# 9407566-10

VOA/SW8240 =

*No hit was detected above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit detected at 30 mg/kg that was above the detection limit of 10 mg/kg. *Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, Be, Cd, Hg, Sb, Se, and Tl. Other elements were detected above the stated

detection limits.

021-019 BH 10'-10.5'

Lab ID# 9407566-11

VOA/SW8240 =

*Hit on Benzene at 17 ug/kg with a detection limit of 5 ug/kg.

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit detected at 20 mg/kg that was above the detection limit of 10 mg/kg. *Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

**METALS** 

SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, As, Be, Cd, Hg, Sb, Se, and Ti. Other elements were detected above the stated

detection limits.

021-019 BH 14'-14.5'

Lab ID# 9407567-12

VOA/SW8240 =

*Hit on Benzene at 8 ug/kg with a detection limit of 5 ug/kg.

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit detected at 22 mg/kg that was above the detection limit of 10 mg/kg. *Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS

SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, As, Be, Cd, Hg, Sb, Se, and Tl. Other elements were detected above the stated

detection limits.

## SAMPLE:

#### WATER

021-RB 02

Lab ID# 9407567-13

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*All met 7 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 7 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 7 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

*No Raw data/Chromatograms were included in the package for review.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*No hit was detected above the detection limit of 0.5 mg/L.

*Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, As,

Be, Cd, Hg, Ni, Pb, Sb, and Tl. Other elements were detected above the stated detection limits. Missing Se analysis for this sample; it was not

reported on the report form.

*All met 6 month holding times.

*COC information verified.

SAMPLE:

# WATER

021-TB 03

Lab ID# 9407567-14

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*All met 7 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection limits.

#### 021-018BH 10'-10.5'MS Lab ID# 9407567-15

VOA/SW8240 =

*All spiked compounds were detected within spiked amounts. Acetone was

detected at 11 ug/kg with the detection limit of 10 ug/kg.

*All met 14 day holding time. *COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*All spiked compounds were detected within spiked amounts.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *All spiked compounds were recovered within spiked amounts.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Spiked compound recovered at 15 ug/kg.

*Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

**METALS** 

SW6010/7000=

*Thallium was the only element that was not recovered within Spiked

amount recovery.

#### 021-018BH 10'-10.5'MSD Lab ID# 9407567-16

VOA/SW8240 =

*All spiked compounds were detected within spiked amounts. All RPD's

were within QC Criteria.
*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*All spiked compounds were detected within spiked amounts. All RPD's

were within QC Criteria.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *All spiked compounds were recovered within spiked amounts. All RPD's were within QC Criteria.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Spiked compound recovered at 15 ug/kg. RPD was within QC Limits.
*Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS

SW6010/7000=

*Thallium was the only element that was not recovered. RPD's were within

QC Criteria.

#### SAMPLE:

#### WATER

021-RB 01

Lab ID# 9407473-01

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*All met 7 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 7 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 7 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

*No Raw data/Chromatograms were included in the package for review.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*No hit was detected above the detection limit of 0.5 mg/L.

*Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, Al,

As, Be, Cr, Cu, Cd, Hg, Ni, Pb, Se, Sb, and Tl. Zn is the other element that

was detected above the stated detection limits.

*All met 6 month holding times.

*COC information verified.

WATER

021-TB 02

Lab ID# 9407473-02

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*All met 7 day holding time.

*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

021-021 BH 1.5'-2'

Lab ID# 9407473-03

VOA/SW8240 =

*No hits above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.
*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit detected at 140 mg/kg that was above the detection limit of 10 mg/kg. *Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS

SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, Be, Sb, Se, and Tl. Other elements were detected above the stated detection limits. Hg reported value was a date and not a result. Please correct.

*All met 6 month holding times. *COC information verified.

021-021 BH 11'-11.5'

Lab ID# 9407473-04

VOA/SW8240 =

*No hits above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit detected at 21 mg/kg that was above the detection limit of 10 mg/kg. *Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, Be, Sb, Se, and Tl. Other elements were detected above the stated detection limits. Hg reported value was a date and not a result. Please correct.

*All met 6 month holding times. *COC information verified.

021-021 BH 14'-14.5'

Lab ID# 9407473-05

VOA/SW8240 =

*Hits on Benzene at 47 ug/kg, Ethylbenzene at 8 ug/kg, Toluene at 19 ug/kg.

and Total Xylenes at 34 ug/kg. *All met 14 day holding time. *COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit detected at 10 mg/kg that was above the detection limit of 10 mg/kg. *Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

**METALS** SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, Be,

Sb, Se, and Tl. Other elements were detected above the stated detection limits. Hg reported value was a date and not a result. Please correct.

*All met 6 month holding times.

*COC information verified.

021-024 BH 1.5'-2'

Lab ID# 9407473-06

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit detected at 14 mg/kg that was above the detection limit of 10 mg/kg. *Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, Be, Sb, Se, and Tl. Other elements were detected above the stated detection limits. Hg reported value was a date and not a result. Please correct.

*All met 6 month holding times.
*COC information verified.

021-024 BH 10'-10.5'

Lab ID# 9407473-07

VOA/SW8240 =

*Hit on Benzene at 640 ug/kg, Ethylbenzene at 21 ug/kg, and Toluene at 8

ug/kg.

*All met 14 day holding time. *COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

*TPH/USEPA 418.1=* 

*Met 28 day holding time.

*COC information verified.

*Hit detected at 18 mg/kg that was above the detection limit of 10 mg/kg.
*Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

**METALS** 

SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, As, Be, Sb, Se, and Tl. Other elements were detected above the stated detection limits. Hg reported value was a date and not a result. Please correct.

*All met 6 month holding times. *COC information verified.

021-024 BH 16'-16.5'

Lab ID# 9407473-08

VOA/SW8240 =

*Hit on Benzene at 330 ug/kg, 1,2-Dichloroethane at 7 ug/kg, and Ethylbenzene 61 ug/kg.

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

*TPH/USEPA 418.1=* 

*Met 28 day holding time.

*COC information verified.

*No hit was detected above the detection limit of 10 mg/kg.

*Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, As,

Be, Sb, Se, and Tl. Other elements were detected above the stated detection limits. Hg reported value was a date and not a result. Please correct.

*All met 6 month holding times.
*COC information verified.

021-020 BH 1.5'-2'

Lab ID# 9407473-09

VOA/SW8240 =

*No hits above the assigned detection limits.

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.
*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 13 mg/kg with the detection limit of 10 mg/kg. *Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, As, Be, Sb, Se, and Tl. Other elements were detected above the stated detection limits. Hg reported value was a date and not a result. Please correct.

*All met 6 month holding times.
*COC information verified.

021-020 BH 6'-6.5'

Lab ID# 9407473-10

VOA/SW8240 =

*Hits on Acetone at 85 ug/kg, Benzene at 140 ug/kg, 2-Butanone at 31 ug/kg,

and Toluene at 14 ug/kg.
*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.
*No Raw Data/Chromatograms were provided for this analysis.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 50 mg/kg with the detection limit of 10 mg/kg.
*Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, As, Be, Sb, Se, and Tl. Other elements were detected above the stated detection

limits. Hg reported value was a date and not a result. Please correct.

*All met 6 month holding times. *COC information verified.

021-020 BH 14'-14.5'

Lab ID# 9407473-11

VOA/SW8240 =

*Hit on Acetone at 13 ug/kg with a detection limit of 10 ug/kg.

*All met 14 day holding time.
*COC information verified.

*All surrogate recoveries were within QC limits.

*Blanks were clean and no compounds were detected above the detection

limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 14 extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 21 mg/kg with the detection limit of 10 mg/kg.
*Raw data/Chromatogram and surrogate recovery was not provided for.

*Blanks were clean of any hits above the detection limits.

METALS SW6010/7000=

*The Elements that were not detected above the detection limit were Ag, As,

Be, Sb, Se, and Tl. Other elements were detected above the stated detection limits. Hg reported value was a date and not a result. Please correct.

*All met 6 month holding times.
*COC information verified.

WATER

021-FB 01

Lab ID# 9407999-01

METALS

SW6010/7000=

*All Elements were not detected above the assigned detection limits.

*All met 6 month holding times.

*COC information verified.

WATER

021-RB 04

Lab ID# 9407999-02

**METALS** 

SW6010/7000=

*Cadmium and Zinc were elements detected above the detection limits. All other elements were not detected above the assigned detection limits.

*All met 6 month holding times.

*COC information verified.

WATER

021-004MW-GW 01

Lab ID# 9407999-03

**METALS** 

SW6010/7000=

*AI, Cd, Cr, Cu, Ni, and Zn were elements detected above the detection limits. All other elements were not detected above the assigned detection limits

*All met 6 month holding times.

*COC information verified.

WATER

021-010MW-GW 01

Lab ID# 9407999-05

**METALS** 

SW6010/7000=

*Al, Cd, Cr, Cu, Ni, and Zn were elements detected above the detection limits. All other elements were not detected above the assigned detection

limits.

*All met 6 month holding times.

*COC information verified.

WATER

021-010AMW-GW 01

Lab ID# 9407999-06

**METALS** 

SW6010/7000=

*Al, Ni, and Zn were elements detected above the detection limits. All other

elements were not detected above the assigned detection limits.

*All met 6 month holding times.

*COC information verified.

WATER

021-014MW-GW 01

Lab ID# 9407999-07

**METALS** 

SW6010/7000=

*AI, Cd, Cr, Cu, Ni, and Zn were elements detected above the detection limits. All other elements were not detected above the assigned detection

limits.

*All met 6 month holding times.

*COC information verified.

WATER

021-026MW-GW 01

Lab ID# 9407999-08

**METALS** 

SW6010/7000=

*AI, Cd, Cr, Cu, Ni, and Zn were elements detected above the detection limits. All other elements were not detected above the assigned detection limits.

*All met 6 month holding times.

*COC information verified.

^{**}Volatiles, Semivolatiles, Pesticides/PCB's, and TPH analyses were canceled due to the receiving temperature of the samples being less than 4 degrees celsius.

WATER

021-TB 05

Lab ID# 9407999-04

VOA/SW8240 =

*Analysis was canceled due to temperature warmer than 4 degrees celsius on sample receipt.

SOIL

021-004 SD

Lab ID# 9407998-10

**METALS** 

SW6010/7000=

*Al, Cd, Cr, Cu, Pb and Zn were elements detected above the detection limits. All other elements were not detected above the assigned detection

limits.

*All met 6 month holding times.

*COC information verified.

^{**}Volatiles, Semivolatiles, Pesticides/PCB's, and TPH analyses were canceled due to the receiving temperature of the samples being less than 4 degrees celsius.

SOIL

021-005 SD

Lab ID# 9407998-11

**METALS** 

SW6010/7000=

*Al, Be, Cd, Cr, Cu, Ni, Pb and Zn were elements detected above the detection limits. All other elements were not detected above the assigned

detection limits.

*All met 6 month holding times.

*COC information verified.

^{**}Volatiles, Semivolatiles, Pesticides/PCB's, and TPH analyses were canceled due to the receiving temperature of the samples being less than 4 degrees celsius.

SOIL

021-005ASD

Lab ID# 9407998-12

**METALS** 

SW6010/7000=

*AI, Ar, Be, Cr, Cu, Ni, Pb and Zn were elements detected above the detection limits. All other elements were not detected above the assigned detection limits.

*All met 6 month holding times.

*COC information verified.

SOIL

021-006 SD

Lab ID# 9407998-13

**METALS** 

SW6010/7000=

*AI, Ar, Be, Cr, Cu, Ni, Pb and Zn were elements detected above the detection limits. All other elements were not detected above the assigned

detection limits.

*All met 6 month holding times.

*COC information verified.

^{**}Volatiles, Semivolatiles, Pesticides/PCB's, and TPH analyses were canceled due to the receiving temperature of the samples being less than 4 degrees celsius.

SOIL

021-006 SD MS

Lab ID# 9407998-14

**METALS** 

SW6010/7000=

*All spiked elements were detected within QC Limits.

*All met 6 month holding times.

*COC information verified.

SOIL

021-006 SD MSD

Lab ID# 9407998-15

**METALS** 

SW6010/7000=

*All spiked elements were detected within QC Limits. RPD's were within QC

Limits except for AI, Cu, and Zn.

*All met 6 month holding times. *COC information verified.

SOIL

021-007 SD

Lab ID# 9407A02-01

METALS

SW6010/7000=

*AI, Ar, Be, Cd, Cr, Cu, Ni, Pb and Zn were elements detected above the detection limits. All other elements were not detected above the assigned detection limits.

*All met 6 month holding times.

*COC information verified.

^{**}Volatiles, Semivolatiles, Pesticides/PCB's, and TPH analyses were canceled due to the receiving temperature of the samples being less than 4 degrees celsius.

THIS PAGE INTENTIONALLY LEFT BLANK

# Duluth Air National Guard Site Investigation Duluth, Minnesota 1308-101-S002 Southern Petroleum Laboratories, Houston, Texas Data Validation Brief Summary Re-Sampling Event

SAMPLE:

SEDIMENT

021-006SD2

Lab ID# 9410146-01

VOA/SW8240 =

*Hit on Methylene chloride was detected at 6 ug/kg with a detection limit of

5 ug/kg.

*Met 14 day holding time. *COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

SVOA/SW8270 =

*Hits on Benzo(a)pyrene at 3000 ug/kg, Di-n-butylphthalate at 330 ug/kg, and

Bis(2-Ethylhexyl)phthalate at 1600 ug/kg were detected above the detection

limit of 330 ug/kg.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 20 mg/kg with a detection limit of 10 mg/kg.

### SEDIMENT

021-005SD2

Lab ID# 9410146-02

VOA/SW8240 =

*Hits on Benzene at 5 ug/kg and Chlorobenzene at 5 ug/kg with detection limits of 5 ug/kg. Methylene Chloride was detected at 400 ug/kg with a

detection limit of 25 ug/kg.
*Met 14 day holding time.
*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

SVOA/SW8270 =

*Hits on Benzo(a)pyrene at 770 ug/kg, Bis(2-Ethylhexyl)phthalate at 470, and Naphthalene at 520 ug/kg were detected above the detection limit of 330 ug/kg.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 230 mg/kg with a detection limit of 10 mg/kg.

SEDIMENT

021-007ASD2

Lab ID# 9410146-03

VOA/SW8240 =

*Hits on Methylene Chloride at 11 ug/kg with detection limits of 5 ug/kg.

Acetone was detected at 11 ug/kg with a detection limit of 10 ug/kg.

*Met 14 day holding time. *COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 120 mg/kg with a detection limit of 10 mg/kg.

### **SEDIMENT**

021-007SD2

Lab ID# 9410146-04

VOA/SW8240 =

*Hits on Methylene Chloride at 23 ug/kg with detection limits of 5 ug/kg.

Acetone was detected at 12 ug/kg with a detection limit of 10 ug/kg.

*Met 14 day holding time.
*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

SVOA/SW8270 =

*No hits were detected above the assigned detection limits.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 74 mg/kg with a detection limit of 10 mg/kg.

#### SEDIMENT

021-004SD2

Lab ID# 9410146-05

VOA/SW8240 =

*Hits on Methylene Chloride at 13 ug/kg with detection limits of 5 ug/kg. Acetone was detected at 35 ug/kg with a detection limit of 10 ug/kg.

*Met 14 day holding time.
*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

SVOA/SW8270 =

*Hit on Benzo(a)pyrene at 530 ug/kg with a detection limit of 330 ug/kg.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 450 mg/kg with a detection limit of 10 mg/kg.

## **SEDIMENT**

021-004SD2 MS

Lab ID# 9410146-06

VOA/SW8240 =

*All spiked amounts were recovered within QC Limits.

*Met 14 day holding time.
*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

SVOA/SW8270 =

*All spiked amounts were recovered within QC Limits.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *All spiked amounts were recovered within QC Limits.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Spiked recovery was detected at 530 mg/kg with a spike of 500 mg/kg.

#### SEDIMENT

021-004SD2 MSD

Lab ID# 9410146-07

VOA/SW8240 =

*All spiked amounts were recovered within QC Limits. RPD's were within

QC Range.

*Met 14 day holding time.
*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

SVOA/SW8270 =

*All spiked amounts were recovered within QC Limits. RPD's were within

QC Range.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *All spiked amounts were recovered within QC Limits. RPD's were within QC Range.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Spiked recovery was detected at 530 mg/kg with a spike of 500 mg/kg.

RPD's were within QC Range.

SOIL

018-007BH2 1.3'-1.7'

Lab ID# 9410180-01

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*Met 14 day holding time.
*COC information verified.

*One of the three surrogates was above and outside QC Limits due to

coeluting interference. No re-analysis was performed. *Blanks were clean of any hits above the detection limits.

SOIL

018-007BH2 1.7'-2.1'

Lab ID# 9410180-02

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*Met 14 day holding time.
*COC information verified.

*All surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

SOIL

018-007BH2 2.1'-2.5'

Lab ID# 9410180-03

VOA/SW8240 =

*Hit on Total Xylenes at 74 ug/kg with a detection limit of 25 ug/kg. *Met 14 day holding time.

*COC information verified.

*All surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

SOIL

018-006BH2 0.8'-1.3'

Lab ID# 9410180-04

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*Met 14 day holding time.
*COC information verified.

*All surrogates were valid and within QC Limits.

SOIL

018-006BH2 1.3'-1.7'

Lab ID# 9410180-05

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*Met 14 day holding time.
*COC information verified.

*All surrogates were valid and within QC Limits.

SOIL

018-006BH2 2.1'-2.5'

Lab ID# 9410180-06

VOA/SW8240 =

*No hits were detected above the assigned detection limits.
*Met 14 day holding time.
*COC information verified.

*All surrogates were valid and within QC Limits.

SOIL

018-RB02

Lab ID# 9410180-07

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*Met 14 day holding time.
*COC information verified.

*All surrogates were valid and within QC Limits.

WATER

021-RB07

Lab ID# 9410180-08

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*Met 14 day holding time.
*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

SVOA/SW8270 =

*Hit on Bis(2-Ethylhexyl)phthalate at 8 ug/l with a detection limit of 5 ug/l.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.
*No raw data information accompanied the Report Forms.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*No hit was detected above the detection limit of 0.5 mg/l.

## 018-006BH2 0.8-1.3 MS Lab ID# 9410180-11

VOA/SW8240 =

*All spiked recoveries were recovered within QC Limits.

*Met 14 day holding time.
*COC information verified.

*All surrogates were valid and within QC Limits.

SOIL

# 018-006BH2 0.8-1.3 MSD Lab ID# 9410180-12

VOA/SW8240 =

*All spiked recoveries were recovered within QC Limits. All RPD's were within QC Range.

*Met 14 day holding time. *COC information verified.

*All surrogates were valid and within QC Limits.

017-010BH2 0.5-1.0

Lab ID# 9410269-01

***Date sample on the report form needs to be corrected from 10/4/94 to 10/6/94.

SVOA/SW8270 =

*No hits were detected above the detection limits assigned for all

compounds.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*Hit was detected at 180 mg/kg with a detection limit of 10 mg/kg.

WATER

021-009MW-GW02

Lab ID# 9410269-02

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*Met 14 day holding time.
*COC information verified.

*Surrogates were valid and within QC Limits.

WATER

021-014MW-GW02

Lab ID# 9410269-03

VOA/SW8240 =

*Hit was detected on Trichloroethane at 68 ug/l with a detection limit of 5

ug/l.

*Met 14 day holding time.
*COC information verified.

*Surrogates were valid and within QC Limits.

WATER

021-010MW-GW02

Lab ID# 9410269-04

VOA/SW8240 =

*No hits were detected above the assigned detection limits for all compounds.

*Met 14 day holding time. *COC information verified.

*Surrogates were valid and within QC Limits.

WATER

021-010AMW-GW02

Lab ID# 9410269-05

VOA/SW8240 =

*No hits were detected above the assigned detection limits for all compounds.

*Met 14 day holding time.
*COC information verified.

*Surrogates were valid and within QC Limits.

WATER

021-026MW-GW03

Lab ID# 9410269-06

VOA/SW8240 =

*No hits were detected above the assigned detection limits for all compounds.

*Met 14 day holding time.
*COC information verified.

*Surrogates were valid and within QC Limits.

WATER

021-RB08

Lab ID# 9410269-07

VOA/SW8240 =

*Hit was detected on 2-Butanone at 22 ug/l with a detection limit of 20 ug/l.

*Met 14 day holding time.
*COC information verified.

*Surrogates were valid and within QC Limits.

WATER

**DANGB-FB01** 

Lab ID# 9410269-08

VOA/SW8240 =

*Hit on 2-Butanone was detected at 22 ug/l with a detection limit of 20 ug/l.

*Met 14 day holding time.
*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

SVOA/SW8270 =

*No hits above the assigned detection limits for all compounds.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

*Raw data did not accompany the Report Form.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*No hit was detected above the detection limit of 0.5 mg/l.

#### WATER

DANGB-FB02

Lab ID# 9410269-09

VOA/SW8240 =

*Hit on Chloroform was detected at 12 ug/l with a detection limit of 5 ug/l.

*Met 14 day holding time.
*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

SVOA/SW8270 =

*No hits above the assigned detection limits for all compounds.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

PEST/SW8080 = *No hits were detected above the assigned detection limits.

*Met 7 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

*Raw data did not accompany the Report Form.

TPH/USEPA 418.1=

*Met 28 day holding time.

*COC information verified.

*No hit was detected above the detection limit of 0.5 mg/l.

#### WATER

TRIP BLANK

Lab ID# 9410146-08

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*Surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

#### SAMPLE:

#### WATER

TRIP BLANK

Lab ID# 9410180-10

VOA/SW8240 =

*No hits were detected above the assigned detection limits.

*Met 14 day extraction holding time and 40 day extract holding time.

*COC information verified.

*All surrogates were valid and within QC Limits.

*Blanks were clean of any hits above the detection limits.

## SAMPLE:

## WATER

TRIP BLANK

Lab ID# 9410269-10

VOA/SW8240 =

*No hits were detected above the assigned detection limits for all compounds.

*Met 14 day holding time.
*COC information verified.

*Surrogates were valid and within QC Limits.

THIS PAGE INTENTIONALLY LEFT BLANK



# OPERATIONAL TECHNOLOGIES

CORPORATION

# Minnesota Air National Guard Site Investigation Duluth, Minnesota 1315-213 Lake Superior Laboratories Duluth, Minnesota **Duluth RFI Data Evaluation Review**

SAMPLE:

SOIL

017-022BH 2'-2.5'

Lab ID# 2575-95LS

Date Sampled:

05/17/95

Date Received: 05/17/95

#### Diesel Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

#### Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

SOIL

017-023BH 2'-2.5'

Lab ID# 2576-95LS

Date Sampled:

05/17/95

Date Received: 05/17/95

## Diesel Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

# Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

SOIL

017-023BH 5'-5.6'

Lab ID# 2577-95LS

Date Sampled:

05/17/95

Date Received: 05/17/95

## Diesel Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

# Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

SOIL

017-024BH 1.5'-2'

Lab ID# 2578-95LS

Date Sampled:

05/17/95

Date Received: 05/17/95

Diesel Range Organics/WDNR Method

SW846-8015 =

*Hit was detected at 13.4 mg/kg above the assigned detection limit of 4 mg/kg.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

#### Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

SAMPLE: .

SOIL

017-024BH 5'-5.5'

Lab ID# 2579-95LS

Date Sampled:

05/17/95

Date Received: 05/17/95

## Diesel Range Organics/WDNR Method

SW846-8015 =

*Hit was detected at 70.6 mg/kg above the assigned detection limit of 4 mg/kg.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

## Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

SOIL

017-025BH 1.5'-2'

Lab ID# 2580-95LS

Date Sampled:

05/17/95

Date Received: 05/17/95

## Diesel Range Organics/WDNR Method

SW846-8015 =

*Hit was detected at 144 mg/kg above the assigned detection limit of 4 mg/kg.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

# Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

SOIL

017-025BH 5.5'-6'

Lab ID# 2581-95LS

Date Sampled:

05/17/95

Date Received: 05/17/95

## Diesel Range Organics/WDNR Method

SW846-8015 =

*Hit was detected at 9.92 mg/kg above the assigned detection limit of 4 mg/kg.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

## Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

SOIL

017-028BH 2'-2.5'

Lab ID# 2582-95LS

Date Sampled:

05/17/95

Date Received: 05/17/95

## Diesel Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

## Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.
*All surrogate recoveries were within acceptable QC limits.

SOIL

017-028BH 5.5'-6'

Lab ID# 2583-95LS

Date Sampled:

05/17/95

Date Received: 05/17/95

## Diesel Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

## Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

WATER

017-001RB

Lab ID# 2584-95LS

Date Sampled:

05/17/95

Date Received: 05/17/95

## Diesel Range Organics/WDNR Method

SW846-8015 =

*No analysis was performed as requested per Chain of Custody. Laboratory overlooked

the analysis requested.

## Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

SOIL

021-026BH 2'-2.5'

Lab ID# 2537-95LS

Date Sampled:

05/16/95

Date Received: 05/16/95

Diesel Range Organics/WDNR Method

SW846-8015 =

*Hit was detected at 88 mg/kg above the assigned detection limit of 4 mg/kg.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

## Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

SOIL

021-026BH 9'-9.5'

Lab ID# 2538-95LS

Date Sampled:

05/16/95

Date Received: 05/16/95

## Diesel Range Organics/WDNR Method

SW846-8015 =

*Hit was detected at 8.70 mg/kg above the assigned detection limit of 4 mg/kg.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

## Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

SOIL

021-027BH 2'-2.5'

Lab ID# 2539-95LS

Date Sampled:

05/16/95

Date Received: 05/16/95

## Diesel Range Organics/WDNR Method

SW846-8015 =

*Hit was detected at 27.7 mg/kg above the assigned detection limit of 4 mg/kg.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

## Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

SOIL

021-027BH 8'-9'

Lab ID# 2540-95LS

Date Sampled:

05/16/95

Date Received: 05/16/95

Diesel Range Organics/WDNR Method

SW846-8015 =

*Hit was detected at 29.1 mg/kg above the assigned detection limit of 4 mg/kg.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

SOIL

021-027BH 9'-10'

Lab ID# 2541-95LS

Date Sampled:

05/16/95

Date Received: 05/16/95

# Diesel Range Organics/WDNR Method

SW846-8015 =

*Hit was detected at 5.60 mg/kg above the assigned detection limit of 4 mg/kg.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

## Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

SOIL

021-028BH 2'-2.5'

Lab ID# 2542-95LS

Date Sampled:

05/16/95

Date Received: 05/16/95

## Diesel Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

# Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

SOIL

021-028BH 1.5'-2'

Lab ID# 2543-95LS

Date Sampled:

05/16/95

Date Received: 05/16/95

Diesel Range Organics/WDNR Method

SW846-8015 =

*Hit was detected at 4.42 mg/kg above the assigned detection limit of 4 mg/kg.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

# Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

SOIL

021-028BH 5.5'-6'

Lab ID# 2544-95LS

Date Sampled:

05/16/95

Date Received: 05/16/95

## Diesel Range Organics/WDNR Method

SW846-8015 =

*Hit was detected at 6.61 mg/kg above the assigned detection limit of 4 mg/kg.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

# Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

SOIL

017-031BH 2'-2.5'

Lab ID# 2621-95LS

Date Sampled:

05/19/95

Date Received: 05/19/95

#### Diesel Range Organics/WDNR Method

SW846-8015 =

*Hit was detected at 19.3 mg/kg above the assigned detection limit of 4 mg/kg.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

#### Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

SOIL

017-031BH 2'-2.5'(Dup)

Lab ID# 2622-95LS

Date Sampled:

05/19/95

Date Received: 05/19/95

#### Diesel Range Organics/WDNR Method

SW846-8015 =

*Hit was detected at 4.02 mg/kg above the assigned detection limit of 4 mg/kg.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

#### Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

SOIL

017-031BH 5.5'-6'

Lab ID# 2623-95LS

Date Sampled:

05/19/95

Date Received: 05/19/95

#### Diesel Range Organics/WDNR Method

SW846-8015 =

*Hit was detected at 41.2 mg/kg above the assigned detection limits of 4 mg/kg.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

### Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

SOIL

017-032BH 2'-2.5'

Lab ID# 2624-95LS

Date Sampled:

05/19/95

Date Received: 05/19/95

#### Diesel Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

#### Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

SOIL

017-021BH 2'-2.5'

Lab ID# 2625-95LS

Date Sampled:

05/19/95

Date Received: 05/19/95

#### Diesel Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

# Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

SOIL

017-021BH 5.5'-6'

Lab ID# 2626-95LS

Date Sampled:

05/19/95

Date Received: 05/19/95

#### Diesel Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

#### Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

SOIL

017-030BH 2'-2.5'

Lab ID# 2627-95LS

Date Sampled:

05/19/95

Date Received: 05/19/95

#### Diesel Range Organics/WDNR Method

SW846-8015 =

*Hit was detected at 189 mg/kg above the assigned detection limit at 4 mg/kg.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

# Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

SOIL

017-029BH 2'-2.5'

Lab ID# 2628-95LS

Date Sampled:

05/19/95

Date Received: 05/19/95

#### Diesel Range Organics/WDNR Method

SW846-8015 =

*Hit was detected at 4.20 mg/kg above the assigned detection limit of 4 mg/kg.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

#### Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

SOIL

017-029BH 2'-2.5' Dup

Lab ID# 2629-95LS

Date Sampled:

05/19/95

Date Received: 05/19/95

#### Diesel Range Organics/WDNR Method

SW846-8015 =

*Hit was detected at 5.60 mg/kg above the assigned detection limit of 4 mg/kg.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

*Blanks were clean of any contamination.

#### Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

WATER

017-002RB

Lab ID# 2630-95LS

Date Sampled:

05/19/95

Date Received: 05/19/95

Diesel Range Organics/WDNR Method

SW846-8015 =

*No analysis was performed as per Chain of Custody requested analyses.

<u>The</u>

laboratory overlooked the analyses requested on the COC.

Gasoline Range Organics/WDNR Method

SW846-8015 =

*No hits were detected above the assigned detection limits.

*Met 14 day analysis holding time.

*COC information verified.

*All initial and continuing calibrations were within acceptable QC Limits.

*All surrogate recoveries were within acceptable QC limits.

# APPENDIX J

ANALYTICAL RESULTS OF THE SOIL, GROUNDWATER, AND SEDIMENT SAMPLES



# SECTION J.1 INTRODUCTION

This appendix concerns the analytical results of soil, groundwater, and sediment samples collected during the recent RCRA Facility Investigation at the 148th Fighter Group, Minnesota ANGS, Duluth, Minnesota. Table J.1 is a summary of the analytical results of soil samples collected from Site 17. Table J.2 is a summary of the analytical results of soil samples collected from Site 18. Table J.3 is a summary of the analytical results of soil samples collected from Site 21. Table J.4 is a summary of the analytical results of groundwater samples collected from Site 21. Table J.5 is a summary of the analytical results of sediment samples collected from Site 21.

THIS PAGE INTENTIONALLY LEFT BLANK

Table J.1

Analytical Results of Soil Samples Collected from Site 17

Minnesota Air National Guard Base

Duluth, Minnesota

Martic	Location No.:	012-0	017-010 BH-5.0-5.5	017-010 BH-5.0-5.5 017-010 BH-5.0-5.5 DUP 017-010 BH-9.0-9.5	017-010 BH-9.0-9.5	5-2.0	012-0	017-012 BH-2.0-2.5
p. Matrix         Soil	Sample Date: Lab Sample No.:		9407703-10	9407703-11	9407703-12	9407703-08	9407703-09	9407703-06
(olight)         (olight)         3001         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301         3301			Soil	Soil	Soil	Soil	Soil	Soil .
the control of control	SVOCs (ug/kg)							
the control of control	Acenaphthene	Ω099	330U	330U	330U	1,000	330U	3300
ced         330U	Acenaphthylene	D099	330U	330U	330U	3300	330U	330U
the field 330U 330U 330U 330U 330U 330U 330U 330	Aniline	0099	330U	330U	330U	330U	3300	330U
Machine   6601   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301	Anthracene	D099	330U	330U	330U	330U	330U	330U
tene 660U 330U 330U 330U 330U 330U 330U 330U	Benzo (a) Anthracene	0099	330U	330U	330U	2,8(X)	330U	3300
tente 66610 3301 3301 3301 2,900 3301 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001 1,0001	Benzo (b) Fluoranthene	Ω099	330U	330U	330U	330U	330U	330U
1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,00	Benzo (k) Fluoranthene	0099	330U	330U	330U	2,900	330U	330U
1,600U   1	Benzo (a) Pyrene	0099	330U	330U	330U	3,100	330U	330U
be         660U         330U         3	Benzoic Acid	3,200U	1,600U	1,600U	1,600U	1,600U	1,600U	1,600U
vy ether         660U         330U	Benzo(g,h,i)Perylene	D099	330U	330U	330U	2,000	330U	3300
vyl ether         660U         330U	Benzyl alcohol	D099	330U	330U	330U	330U	330U	330U
c 660U 330U 330U 330U 330U 330U 330U 330U	4-Bromophenylphenyl ether	D099	3300	330U	330U	3300	330U	3300
Geoff Good         330U	Butylbenzylphthalate	0099	330U	330U	330U	330U	330U	3300
Methane         660U         330U         330U         330U         330U           Methanel         660U         330U         330U         330U         330U           e         660U         330U         330U         330U         330U           e         660U         330U         330U         330U         330U           yl ether         660U         330U         330U         330U         330U           see         660U         330U         330U         330U         330U           e         660U         330U	di-n-Butyl phthalate	D099	330U	330U	330U	330U	330U	330U
Methane         660U         330U	Carbazole	0099	330U	330U	330U	870	330U	330U
MAchinace         660U         330U	4-Chloroaniline	D(99	330U	330U	330U	3300	330U	330U
ther 660U 330U 330U 330U 330U 330U 330U 330U	bis(2-Chloroethoxy)Methane	0099	330U	330U	330U	330U	330U	330U
y) Ether         660U         330U	bis(2-Chloroethyl) Ether	Ω(999	330U	330U	330U	330U	330U	330U
henol 660U 330U 330U 330U 330U 330U 330U 330U	bis(2-Chloroisopropyl)Ether	D099	330U	330U	330U	330U	330U	330U
e         660U         330U         33	4-Chloro-3-Methylphenol	0099	330U	330U	3300	330U	330U	330U
ocold         330U         450         330U         330U <th< td=""><td>2-Chloronaphthalene</td><td>Ω099</td><td>330U</td><td>330U</td><td>330U</td><td>330U</td><td>330U</td><td>330U</td></th<>	2-Chloronaphthalene	Ω099	330U	330U	330U	330U	330U	330U
vyl ether         660U         330U	2 Chlorophenol	U(x)0	3300	33011	3300	3300	3300	330U
ene         660U         330U         330U         330U         330U           ene         660U         330U         330U         450         330U           feoU         330U         330U         450         330U           c         660U         330U         330U         330U         330U           c         660U         330U         330U         330U         330U           inc         660U         330U         330U         330U         330U           inc         660U         330U         330U         330U         330U           inc         660U         330U         330U         330U         330U           330U         330U         330U         330U         330U           660U         330U         330U         330U         330U	4-Chlorophenylphenyl ether	U(x)	330U	330U	3300	3300	330U	3300
ene 660U 330U 330U 450 330U 330U 650U 330U 330U 450 330U 450 330U 650U 330U 330U 330U 330U 330U 330U 650U 330U 330U 330U 330U 330U 330U 330U 650U 330U 330U 330U 330U 330U 330U 330U 3	Chrysene	Ω099	330U	330U	330U	3,600	3300	330U
tick         660U         330U         330U         450         330U           c         660U         330U         330U         330U         330U         330U         330U           c         660U         330U         330U         330U         330U         330U         330U           line         660U         330U         330U         330U         330U         330U         330U           fine         660U         330U         330U         330U         330U         330U         330U           fine         660U         330U         330U         330U         330U         330U           660U         330U         330U         330U         330U         330U         330U           660U         330U         330U         330U         330U         330U         330U	Dibenz(a,h) Anthracene	D(999	330U	330U	3300	330U	330U	330U
tine 660U 330U 330U 330U 330U 330U 330U 330U	Dibenzofuran	U099	3300	330U	330U	450	330U	330U
c 660U 330U 330U 330U 330U 330U 330U 330U	1,2 Dichtorobenzene	UGOU	3300	330U	330U	330U	330U	330U
tine 660U 330U 330U 330U 330U 330U 330U 330U	1,3-Dichlorobenzene	U099	330U	330U	330U	3300	330U	3300
line         660U         330U         330U <th< td=""><td>1,4-Dichlorobenzene</td><td>D099</td><td>330U</td><td>330U</td><td>330U</td><td>330U</td><td>330U</td><td>330U</td></th<>	1,4-Dichlorobenzene	D099	330U	330U	330U	330U	330U	330U
660U         330U         330U <th< td=""><td>[3,3'-Dichlorobenzidine</td><td>Ω099</td><td>330U</td><td>330U</td><td>330U</td><td>330U</td><td>330U</td><td>330U</td></th<>	[3,3'-Dichlorobenzidine	Ω099	330U	330U	330U	330U	330U	330U
660U 330U 330U 330U 330U 330U 330U 330U	2,4-Dichtorophenol	U(b)d	330U	330U	330U	330U	330U	330U
660U 330U 330U 330U 330U 330U 330U 330U	Diethylphthalate	D()99	330U	330U	330U	330U	330U	330U
330U 330U 330U 330U 330U 330U	2,4-Dimethylphenol	D099	330U	330U	330U	330U	330U	3300
	Dimethyl Phthalate	0099	330U	330U	330U	330U	330U	330U

HB 3

U - Indicates compound analyzed for but not detected SVOCs - Semivolitate organic compounds
TPN - Total petroleum hyrocarbons

BH - Borehole DUP - Duplicate

Table J.1
Analytical Results of Soil Samples Collected from Site 17
Minnesota Air National Guard Base
Duluth, Minnesota

Location No.:	017-01	017-010 BH-5.0-5.5	010 BH-5.0-5.5 017-010 BH-5.0-5.5 DUP 017-010 BH-9.0-9.5		.5-2.0	017-0	017-012 BH-2.0-2.5
Sample Date: Lab Sample No.:	10/4/94 9410269-01	7/19/94 9407703-10	7/19/94 9407703-11	7/19/94 9407703-12	7/19/94 9407703-08	7/19/94 9407703-09	7/19/94 9407703-06
Analyte Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil
SVOCs (ug/kg)							
4,6-Dinitro-2-Methy ophenol	1,600U	8001	0008	0008	800U	0008	0008
2,4-Dinitrophenol	1,600U	800U	0008	0008	0008	800U	0008
2,4-Dinitrotoluene	0099	330U	330U	330U	330U	330U	330U
2,6-Dinitrotoluene	0(8)01	330U	3300	3300	330U	3300	3300
1,2-Diphenylhydrazine	N099	330U	330U	330U	330U	330U	330U
bis (2-Ethylhexyl) Phthalate	0099	330U	330U	330U	330U	330U	330U
Fluoranthene	N099	330U	330U	330U	5,800	330U	330U
Fluorene	D(999	330U	3300	330U	330U	3300	330U
Hexachlorobenzene	Ω099	330U	330U	330U	330U	330U	330U
Hexachlorobutadiene	U099	330U	330U	330U	3300	330U	330U
Hexachloroethane	Ω099	330U	330U	330U	330U	330U	330U
[Hexachlorocyclopentadiene	0099	330U	330U	330U	330U	330U	330U
Indeno (1,2,3-cd) Pyrene	D(999	330U	330U	330U	1,800	330U	330U
Isophorone	0099	330U	330U	330U	330U	330U	330U
2-Methylnaphthalene	0099	330U	330U	330U	330U	330U	330U
2-Methylphenol	D(999	330U	330U	330U	330U	330U	330U
4-Methylphenol	0000	330U	330U	3300	330U	330U	3300
Naphthalene	Ω099	330U	330U	330U	400	330U	330U
2-Nitroaniline	D099	330U	330U	330U	330U	330U	330U
3-Nitroaniline	1,600U	800U	M008	800U	0008	N008	1008
4-Nitroaniline	1,600U	8(X)1	11008	8000	11008	8000	11008
Nitrobenzene	(1099	3300	33011	330U	330U	33011	3300
2-Nitrophenol	D(999	330U	3300	330U	330U	330U	330U
4-Nitrophenol	1,600U	M008	0008	D008	0008	1008	0008
N-Nitrosodiphenylamine (1)	1 0099	330U	330U	33011	330U	330U	330U
N Nitroso Di n Propylamine	13090	330U	3300	3300	3300	3,301	3300
Di n-Octyl Phthalate	0000	330U	330U	330U	3300	3300	330U
Pentachlorophenol	1,600U	8000U	D008	10008	0008	D008	N008
Phenanthrene	11099	33011	3300	330U	4,900	330U	33011
Phenol	()(4)()	3300	3300	330U	3300	3300	3300
Ругене	D(999	330U	330U	330U	006,4	330U	330U
Pyridine	D099	330U	330U	330U	330U	330U	330U
1,2,4-Trichlorobenzene	0009	330U	330U	330U	330U	330U	330U
2,4,5-Trichlorophenol	1,600U	8001	8(X)()	8(X)(1)	8(X)1)	11008	8001
2,4,6-Trichlorophenol	D(99)	330U	330U	330U	330U	330U	330U
[PPH (mg/kg)	180	36	22	100	180	25	061

1) - traferates compound analyzed for but not detected SVOCs - Semivolitate organic compounds
TPH - Total petroleum hyrocarbons

BH - Borehole DUP - Duplicate

ug/kg - micrograms per kilogram mg/kg - milligrams per kilogram

ug/kg - micrograms per kilogram mg/kg - milligrams per kilogram

Table J.1
Analytical Results of Soil Samples Collected from Site 17
Minnesota Air National Guard Base
Duluth, Minnesota

Matrix         Soil         <	Location No.: Sample Date: Lab Sample No.:	017-012 BH-5.0-5.5 7/19/94 9407703-07	017-013 BH-1.5-2.0 7/18/94 9407680-01	017-013 BH-5.0-5.5 7/18/94 9407680-02	017-013 BH-9.0-9.5 7/18/94 9407680-03	017-014 BH-1.5-2.0 7/19/94 9407703-02	017-014 BH-5.0-5.5 7/19/94 9407703-03	017-013 BH-9.0-9.5   017-014 BH-1.5-2.0   017-014 BH-5.0-5.5   017-014 BH-5.0-5.5 DUP 7/18/94   7/19/94   7/19/94   7/19/94   7/19/94   7/19/94   9407703-02   9407703-03
350U		Soil	Soil	Soil	Sofl	Soil	Soil	Soil
3300   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301	SVOCs (ug/kg)						;	
3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301	Acenaphthene	3300	330U	330U	330U	3,300U	330U	3300
3301 3301 3301 3301 3301 3301 3300 3300	Acenaphthylene	330U	330U	330U	330U	3,300U	330U	330U
3907   3904   3904   3304   3307   3309   33004   3309   33004   3309   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   33004   3300	Apiline	330U	330U	330U	3300	3,300U	330U	3300
330U         330U <th< td=""><td>Anthracene</td><td>330U</td><td>330U</td><td>330U</td><td>330U</td><td>3,300U</td><td>3300</td><td>330U</td></th<>	Anthracene	330U	330U	330U	330U	3,300U	3300	330U
330U	Benzo (a) Anthracene	330U	330U	330U	330U	3,300U	330U	330U
3301   3301   3301   3301   3301   3301   3301   3301     1,6600   1,6600   1,6600   1,6600   1,6000   1,3000   1,3000     3301   3301   3301   3301   3301   3300   3300   3300     3301   3301   3301   3301   3301   3301   3300   3300     3302   3303   3301   3301   3301   3301   3300   3300     3303   3304   3301   3301   3301   3301   3300   3301     3304   3305   3301   3301   3301   3301   3300   3301     3307   3301   3301   3301   3301   3301   3300     3308   3301   3301   3301   3301   3301   3300     3309   3301   3301   3301   3301   3301   3300     3301   3301   3301   3301   3301   3301   3300     3301   3301   3301   3301   3301   3300   3300     3301   3301   3301   3301   3301   3300   3300     3301   3301   3301   3301   3301   3300   3300     3301   3301   3301   3301   3301   3300   3300     3301   3301   3301   3301   3301   3300     3301   3301   3301   3301   3301   3300     3301   3301   3301   3301   3300   3300     3301   3301   3301   3301   3300   3300     3301   3301   3301   3301   3300   3300     3301   3301   3301   3301   3300     3301   3301   3301   3301   3300     3301   3301   3301   3301   3300     3301   3301   3301   3301   3300     3301   3301   3301   3300   3300     3301   3301   3301   3301   3300     3301   3301   3301   3301   3300     3301   3301   3301   3301   3300     3301   3301   3301   3301   3300     3301   3301   3301   3301   3300     3301   3301   3301   3301   3300     3301   3301   3301   3301   3300     3301   3301   3301   3301   3300     3301   3301   3301   3301   3300     3301   3301   3301   3301   3300     3301   3301   3301   3301   3300     3301   3301   3301   3301   3301     3301   3301   3301   3301   3300     3301   3301   3301   3301   3301     3301   3301   3301   3301   3301     3301   3301   3301   3301   3301     3301   3301   3301   3301   3301     3301   3301   3301   3301   3301     3301   3301   3301   3301   3301     3301   3301   3301   3301   3301     3301   3301   3301   3301   3301     3301   3301   3301   3301   3301     3301	Benzo (b) Fluoranthene	330U	420	330U	330U	3,300U	330U	330U
4 MOL         1,660U         1,660U </td <td>Benzo (k) Fluoranthene</td> <td>330U</td> <td>330U</td> <td>330U</td> <td>33011</td> <td>3,3000</td> <td>330U</td> <td>330U</td>	Benzo (k) Fluoranthene	330U	330U	330U	33011	3,3000	330U	330U
1,600U   1	Вепло (а) Ругенс	330U	3300	3300	330U	3,300U	3300	330U
330U 330U 330U 330U 330U 330U 330U 330U	Benzoic Acid	1,600U	1,600U	1,600U	1,600U	16,000U	1,600U	1,600U
cr 330U 330U 330U 330U 330U 330U 330U 330	  Benzo(g,h,i)Perylene	330U	330U	3300	330U	3,300U	330U	330U
cr 330U 330U 330U 330U 330U 330U 330U 330	Benzyl alcohol	330U	330U	3300	330U	3,300U	330U	330U
330U         330U <th< td=""><td>4-Bromophenylphenyl ether</td><td>330U</td><td>330U</td><td>330U</td><td>330U</td><td>3,300U</td><td>330U</td><td>330U</td></th<>	4-Bromophenylphenyl ether	330U	330U	330U	330U	3,300U	330U	330U
330U         330U <td< td=""><td>Butylbenzylplithalate</td><td>3300</td><td>330U</td><td>330U</td><td>330U</td><td>3,300U</td><td>330U</td><td>330U</td></td<>	Butylbenzylplithalate	3300	330U	330U	330U	3,300U	330U	330U
330U         330U <th< td=""><td>di-n-Butyl phthalate</td><td>330U</td><td>330U</td><td>330U</td><td>430</td><td>3,300U</td><td>330U</td><td>330U</td></th<>	di-n-Butyl phthalate	330U	330U	330U	430	3,300U	330U	330U
330U	Carbazole	330U	330U	330U	330U	3,300U	330U	330U
3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301   3301	4-Chloroaniline	330U	330U	330U	330U	3,3000	330U	330U
330U	bis(2 Chloroethoxy)Methane	330U	330U	330U	330U	3,3000	330U	330U
sigut         330U         330U <t< td=""><td>ois(2-Chloroethyl)Ether</td><td>330U</td><td>330U</td><td>330U</td><td>330U</td><td>3,300U</td><td>330U</td><td>330U</td></t<>	ois(2-Chloroethyl)Ether	330U	330U	330U	330U	3,300U	330U	330U
330U 330U 330U 330U 330U 330U 330U 330U	bis(2-Chloroisopropyl)Ether	3300	3300	330U	330U	3,300U	330U	330U
e         330U         33	4-Chloro-3-Methylphenol	330U	330U	330U	330U	3,300U	330U	330U
330U         330U <th< td=""><td>2. Chloronaphthalene</td><td>330U</td><td>3300</td><td>330U</td><td>330U</td><td>3,300U</td><td>330U</td><td>330U</td></th<>	2. Chloronaphthalene	330U	3300	330U	330U	3,300U	330U	330U
syl ether         330U	2-Chlorophenol	330U	330U	330U	330U	3,300U	330U	330U
cne         330U         330U         330U         330U         330U           330U         330U         330U         330U         330U         330U           c         330U         330U         330U         330U         330U           c         330U         330U         330U         330U         330U           c         330U         330U         330U         330U         330U           ine         330U         330U         330U         330U         330U           330U         330U         330U         330U         330U         330U           330U         330U         330U         330U         330U         330U           330U         330U         330U         330U	4-Chlorophenylphenyl ether	330U	330U	330U	330U	3,300U	330U	330U
cne 330U 330U 330U 330U 330U 330U 330U 330	Chrysene	330U	370	330U	330U	3,300U	330U	330U
ne         330U         330U         330U         330U         330U           c         330U         330U         330U         330U         330U         330U           c         330U         330U         330U         330U         330U         330U           inc         330U         330U         330U         330U         330U         330U           330U         330U         330U         330U         330U         330U         330U           330U         330U         330U         330U         330U         330U         330U           330U         330U         330U         330U         330U         330U         330U	Dibenz(a,h)Anthracene	330U	330U	330U	330U	3,300U	330U	330U
ne         330U         3	Dibenzofuran	330U	330U	330U	330U	3,300U	3300	330U
c 330U 330U 330U 330U 330U 330U 330U 330	1,2 -Dichlorobenzene	330U	330U	330U	330U	3,300U	330U	330U
tine 330U 330U 330U 330U 330U 330U 330U 330	1,3-Dichlorobenzene	330U	330U	330U	330U	3,300U	330U	330U
line         330U         330U <th< td=""><td>1,4-Dichlorobenzene</td><td>330U</td><td>330U</td><td>330U</td><td>330U</td><td>3,300U</td><td>330U</td><td>330U</td></th<>	1,4-Dichlorobenzene	330U	330U	330U	330U	3,300U	330U	330U
330U         330U <th< td=""><td>3,3'-Dichlorobenzidine</td><td>330U</td><td>330U</td><td>330U</td><td>330U</td><td>3,300U</td><td>330U</td><td>330U</td></th<>	3,3'-Dichlorobenzidine	330U	330U	330U	330U	3,300U	330U	330U
330U 330U 330U 330U 330U 330U 330U 330U	2,4-Dichlorophenol	330U	330U	330U	3300	3,300U	330U	330U
330U 330U 330U 330U 330U 330U 330U 330U	Diethylphthalate	330U	330U	330U	330U	3,300U	330U	330U
330U 330U 330U 330U 3,30U 330U	2,4-Dimethylphenol	330U	330U	330U	330U	3,300U	33011	3300
	Dimethyl Phthalate	33011	330U	330U	330U	3,300U	330U	330U

BH - Borehole DUP - Duplicate

Analytical Results of Soil Samples Collected from Site 17 Minnesota Air National Guard Base Duluth, Minnesota Table J.1

Location No.: Sample Date: Lab Sample No.:	Location No.: 017-012 BH-5.0-5.5 Sample Date: 9407703-07	017-013 BH-1.5-2.0 7/18/94 9407680-01	017-013 BH-5,0-5.5 7/18/94 9407680-02	017-013 BH-9.0-9.5 7/18/94 9407680-03	017-014 BH-1.5-2.0 7/19/94 9407703-02	017-014 BH-5.0-5.5 7/19/94 9407703-03	013 BH-1.5-2.0         017-013 BH-5.0-5.5         017-013 BH-5.0-5.5         017-014 BH-1.5-2.0         017-014 BH-5.0-5.5         017-014 BH-
Analyte Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil
SVOCs (ug/kg)							
4,6-Dinitro-2-Methylphenol	0008	0008	0008	M008	8,000U	0008	0008
2,4-Dinitrophenol	80011	(K))8	8(x)17	8000	8,0001	8(X)Lj	S(x)(1)
2,4-Diminotoluene	3300	330U	330U	330U	3,300U	330U	330U
2,6-Dinitrotoluene	330U	330U	330U	330U	3,300U	330U	330U
1,2-Diphenylhydrazine	330U	330U	330U	330U	3,300U	330U	330U
bis (2-Ethylhexyl) Phthalate	330U	330U	330U	330U	3,300U	3300	330U
Fluoranthene	330U	590	330U	330U	3,300U	330U	330U
Fluorene	330U	330U	330U	330U	3,300U	330U	330U
Hexachlorobenzene	330U	330U	330U	330U	3,300U	330U	330U
Hexachlorobutadiene	330U	330U	330U	330U	3,300U	330U	330U
Hexachloroethane	330U	330U	3300	330U	3,3000	330U	330U
Hexachlorocyclopentadiene	330U	3300	330U	330U	3,300U	330U	330U
Indeno (1,2,3-ed) Pyrene	330U	330U	330U	330U	3,3(x)U	330U	3300
Тѕорногопе	330U	330U	330U	330U	3,300U	330U	330U
2-Methylnaphthalene	330U	330U	330U	330U	3,300U	330U	330U
2-Methylphenol	330U	330U	330U	330U	3,300U	330U	330U
4-Methylphenol	330U	330U	330U	330U	3,300U	330U	330U
Naphthalene	330U	330U	330U	330U	3,300U	330U	330U
2-Nitroaniline	330U	800U	DO08	800U	3,300U	330U	330U
3-Nitroaniline	0008	M008	NOOU	0008	8,000	800ti	800U
4-Nitroaniline	8(X)U	800U	N008	N008	8,000	MO08	M008
Nitrobenzene	330U	330U	330U	330U	3,300U	330U	330U
2-Nitrophenol	330U	330U	330U	330U	3,300U	330U	330U
4-Nitrophenol	8000	800U	8000	80011	8,0000	800U	800U
N-Nitrosodiphenylamine (1)	330U	330U	330U	330U	3,300U	330U	330U
N-Nitroso-Di-n-Propylamine	330U	330U	3300	330U	3,300U	330U	330U
Di-n-Octyl Phthalate	330U	330U	330U	330U	3,300U	330U	330U
Pentachlorophenol	0008	800U	8000	8000	8,0000	8000	800U
Phenanthrene	330U	390	3300	3300	3,300U	330U	330U
Phenol	330U	330U	330U	330U	3,300U	330U	330U
Pyrene	330U	040	330U	330U	3,300U	330U	330U
Pyridine	330U	330U	330U	330U	3,300U	330U	330U
1,2,4-Trichlorobenzene	330U	330U	330U	330U	3,300U	330U	330U
2,4,5-Trichlorophenol	0008	M0008	800U	N008	8,000U	1008	800U
2,4,6-Trichtorophenol	330U	330U	330U	330U	3,300U	330U	330U
(IPH (mg/kg)	13	275	370	34	3,600	350	64

U - Indicates compound analyzed for but not detected. SVOCs - Semivolitale organic compounds TPH - Total petroleum hyrocarbons

BH - Borehole DUP - Duplicate

ug/kg - micrograms per kilogram mg/kg - miligrams per kilogram

Analytical Results of Soil Samples Collected from Site 17 Minnesota Air National Guard Base Duluth, Minnesota Table J.1

Location No.:	017-014 BH-9.0-9.5	017-015 BH-2.0-2.5	017-015 BH-5.5-6.0	017-015 BH-9.5-10.0   017-016 BH-1.5-2.0   017-016 BH-5.0-5.5	17-016 BH-1.5-2.0	017-016 BH-5.0-5.5	017-0
Sample Date: Lab Sample No.:	7/19/94 9407703-05	7/18/94 9407680-04	7/18/94 9407680-05	7/18/94	7/18/94	7/18/94 9407680-08	7/18/94 9407680-09
Analyte	Soil	Soll	Soil	Soil	Soil	Soll	Soil
SVOCs (ug/kg)							
Acenaphthene	330U	1099	Ω099	0099	1,600U	330U	330U
Acenaphthylene	330U	D099	11099	1099	1,600U	330U	3300
Aniline	330U	0099	Ω099	Ω099	1,600U	330U	330U
Anthracene	3300	n099	N099	D099	1,600U	330U	330U
Benzo (a) Anthracene	330U	П099	Ω099	0099	1,600U	330U	330U
Benzo (b) Fluoranthene	330U	Ω099	0099	n099	1,600U	330U	330U
Benzo (k) Fluoranthene	330U	0099	Ω099	n099	1,600	330U	330U
Benzo (a) Pyrene	330U	0099	11()99	1099	1,6001	330U	33011
Benzoic Acid	1,600	3,2000	3,200U	3,200U	S,000U	1,6000	1,66001
Benzo(g,h,i)Perylene	330U	0099	Π099	n099	1,6000	330U	330U
Benzyl alcohol	330U	1099	Ω099	n099	1,600U	330U	330U
4-Bromophenylphenyl ether	330U	D099	Ω099	1099	1,600U	330U	330U
Butylbenzylphthalate	330U	0099	Ω099	D(999	1,668)(1	330U	330U
di-n-Butyl phthalate	3300	10 <b>9</b> 9	Ω099	0000	1,6000	330U	330U
Carbazole	330U	Ω099	Π099	0099	1,600U	330U	330U
4-Chloroaniline	330U	0099	Ω099	D()99	1,600U	330U	330U
bis(2-Chloroethoxy)Methane	330U	Ω099	0099	D099	1,600U	330U	330U
bis(2-Chloroethyl)Ether	330U	1099	11099	0000	1,600U	330U	330U
bis(2-Chloroisopropyl)Ether	330U	N099	0000	D099	1,600U	330U	3300
4-Chloro-3-Methylphenol	330U	D(999	0099	n099	1,600U	330U	330U
2-Chloronaphthalene	3300	D099	D099	n099	1,600U	330U	330U
2-Chlorophenol	330U	Ω099	0099	0099	1,600U	330U	330U
4-Chloropheny[phenyl ether	330U	0099	Ω099	0099	1,600U	330U	330U
Chrysene	330U	1099	Ω099	0099	1,600U	330U	330U
Dibenz(a,h) Anthracene	330U	Ω099	Ω099	0099	1,600U	330U	330U
Uibenzofuran	330U	D099	0099	1099	1,600U	330U	330U
1,2 -Dichlorobenzene	330U	0099	0099	N099	1,600U	330U	330U
1,3-Dichlorobenzene	330U	1099	11099	[]((99)	1,600U	330U	330U
1,4-Dichlorobenzene	330U	Ω099	0009	0099	1,600U	330U	330U
3,3'-Dichlorobenzidine	330U	D099	Ω099	10999	1,600U	330U	330U
2,4-Dichlorophenol	3300	N099	Π099	D099	1,600U	330U	330U
Diethylphthalate	330U	0099	Ω099	0099	1,600U	330U	330U
2,4-Dimethylphenol	330U	D099	00099	0099	1,600U	330U	330U
Dimethyl Phthalate	330U	0099	0099	0099	1,600U	330U	330U

BH - Borehole DUP - Dupficate

ug/kg - micrograms per kilogram mg/kg - miliigrams per kilogram

Analytical Results of Soil Samples Collected from Site 17 Minnesota Air National Guard Base Duluth, Minnesota Table J.1

Sample Date:	Location No.: 017-014 BH-9.0-9.5 Sample Date: 7/19/94		017-015 BH-5.5-6.0 7/18/94	017-015 BH-2.0-2.5 017-015 BH-5.5-6.0 017-015 BH-9.5-10.0 017-016 BH-1.5-2.0 017-016 BH-5.0-5.5 017-016 BH-9.0-9.5 7/18/94 7/18/94 7/18/94 7/18/94 7/18/94 7/18/94 7/18/94 04/17/20.04 04/17/20.04 04/17/20.04 04/17/20.04	017-016 BH-1.5-2.0 7/18/94	017-016 BH-5.0-5.5 7/18/94	017-016 BH-9.0-9.5 7/18/94
Analyte was a second of the Matrix	Soil	Soll	Soil	Soil	Soil	Soil	Soil
(ug/kg)							
4,6-Dinitro-2-Methylphenol	800U	1,600U	1,600U	1,600U	4,000U	П008	0008
2,4-Dinitrophenol	B(X)U	1,600U	1,600U	1,600 U	4,0000	1008	2000
2,4-Dinitrotoluene	330U	N099	N099	N099	1,600U	330U	330U
2,6-Dinitrotoluene	330U	Ω099	Ω099	D099	1,600U	330U	330U
1,2-Diphenylhydrazine	330U	N099	N099	0099	1,600U	330U	330U
bis (2-Ethylhexyl) Phthalate	330U	0099	D099	1099	1,6000	330U	330U
Fluoranthene	330U	0099	D099	D099	1,6000	330U	330U
Fluorene	330U	N099	N099	Л099	1,600U	330U	330U
Hexachlorobenzene	330U	Ω099	0099	Ω099	1,600U	330U	330U
Hexachlorobutadiene	330U	N099	Ω099	Ω099	1,600U	330U	330U
Hexachloroethane	330U	D099	Ω099	1099	1,600	330U	330U
Hexachlorocyclopentadiene	330U	1099	Ω099	0099	1,600U	330U	330U
Indeno (1,2,3-cd) Pyrene	330U	Ω(999	Ω099	0099	1,600U	330U	330U
Isophorone	330U	11099	0099	0099	1,600U	330U	330U
2-Methylnaphthatene	330U	0000	11099	(1009	1,6000	330U	330U
2-Methylphenol	330U	6601	D099	0099	1,600U	330U	330U
4-Methylphenol	330U	D099	n099	D099	1,600U	330U	330U
Naphthalene	330U	0099	Ω099	0099	1,600U	330U	330U
2 Nitroaniline	330U	11(900	0(0)(1)	11000	1,0XX)U	2008	(1(0)8
3 Nitroaniline	N(X)U	1,600U	1,600U	1,6000	1,0X0U	0008	2000
4-Nitroaniline	800U	1,600U	1,600U	1,600U	4,000 U	8000	MO08
Nitrobenzene	330U	П099	0099	D()99	1,600U	330U	330U
2-Nitrophenol	330U	D099	0000	0099	1,600U	330U	330U
4 Nitrophenol	11(X)(X)	1,600U	1,600U	1,600U	U0(X), 4	SOUL	8000
N-Nitrosodiphenylamine (1)	330U	Ω099	0099	D099	1,600U	3300	330U
N-Nitroso-Di-n-Propylamine	330U	D099	0099	0099	1,600U	3300	330U
Di-n-Octyl Phthalate	330U	0099	0099	11099	1,6001	330U	330U
Pentachlorophenol	8001	1,6001	1,0001	1,6000	4,000	8000	80800
Phenanthrene	330U	D(999	D(099	U000	1,6(X)U	330U	330U
Phenol	330U	0099	0099	D099	1,600U	330U	330U
Pyrene	330U	Ω099	Ω099	0099	1,600U	330U	330U
Pyridine	330U	Ω099	0099	0.099	1,6000	330U	330U
11,2,4-Trichlorobenzene	330U	11099	06011	(10)99	1,6000	3300	330U
2,4,5.Trichlorophenol	8000	1,600U	1,600U	1,600U	DOXO.4	SOOU	S(x)U
2,4,6-Trichlorophenol	330U	0099	П099	0099	1,600U	330U	330U
TPH (mg/kg)	17	300	110	22	7,7(X)	270	77
The state of the s							

U - Indicates compound analyzed for but not detected. SVOCs - Semivolitale organic compounds TPH - Total petroleum hyrocarbons

BH - Borehole DUP - Dupficate

Table J.1

Analytical Results of Soil Samples Collected from Site 17

Minnesota Air National Guard Base

Duluth, Minnesota

Location No.:	017-017 BH-2.0-2.5	017-017 BH-5.0-5.5	017-017 BH-9.0-9.5	017-018 BH-1.5-2.0	017-018 BH-5.0-5.5	017-018 BH-5.0-5.5   017-018 BH-5.0-5.5 DUP   017-018 BH-9.0-9.5	017-018 BH-9.0-9.5
Sample Date: Lab Sample No.:	7/19/94 9407703-13	7/19/94 9407703-14	7/19/94 9407703-15	7/20/94	7/20/94	7/20/94 9407813-04	7/20/94
Analyte	Soil	Soil	Soil	Soil	Soil	Soil	Soil
SVOCs (ug/kg)					-		
Acenaphthene	330U	330U	330U	330U	n099	1,600U	330U
Acenaphthylene	330U	330U	330U	330U	1099	1,600U	330U
Aniline	330U	330U	330U	330U	1099	1,600U	330U
Anthracene	330U	330U	330U	330U	Ω099	1,600U	330U
Benzo (a) Anthracene	330U	330U	330U	330U	N099	1,600U	330U
Benzo (b) Fluoranthene	330U	330U	330U	330U	1099	1,600U	330U
Benzo (k) Fluoranthene	330U	330U	330U	330U	11099	1,600	330U
Benzo (a) Pyrene	330U	330U	330U	3300	Ω099	1,600U	330U
Benzoic Acid	1,600U	1,600U	1,600U	1,600U	3,200U	8,000U	1,600U
Benzo(g,h,i)Perylene	330U	330U	330U	330U	0099	1,600U	330U
Benzyl alcohol	330U	330U	330U	330U	1099	1,600U	330U
4-Bromophenylphenyl ether	330U	330U	330U	330U	Ω099	1,6000	330U
Butylbenzylphthalate	330U	330U	330U	330U	0099	1,600U	330U
di-n-Butyl phthalate	330U	330U	330U	330U	0000	1,600U	330U
Carbazole	330U	330U	330U	330U	0009	1,600U	330U
4-Chloroaniline	330U	330U	330U	330U	D099	1,600U	3300
bis(2-Chloroethoxy)Methane	330U	330U	330U	330U	Л099	1,600U	330U
bis(2-Chloroethyl)Ether	330U	330U	330U	330U	1099	1,600U	330U
bis(2-Chloroisopropy1)Ether	330U	330U	3300	3300	1000	1,6001	330U
4-Chloro-3-Methylphenol	330U	330U	330U	330U	D099	1,6000	330U
2-Chloronaphthalene	330U	330U	330U	330U	D099	1,6000	330U
2-Chlorophenol	330U	330U	330U	330U	0099	1,600U	330U
4-Chlorophenylphenyl ether	330U	330U	330U	330U	D099	1,600	330U
Chrysene	330U	330U	330U	330U	D099	1,600U	330U
Dibenz(a,h)Anthracene	330U	330U	330U	330U	D099	1,600U	330U
Dibenzofuran	330U	330U	330U	330U	D099	1,600U	330U
1,2 -Dichlorobenzene	330U	330U	330U	330U	0099	1,600U	330U
1,3 Dichlorobenzene	3300	330U	DOLL	11011	(1000)	1,(48)[]	13011
1,4 Dichlorobenzene	330U	330U	330U	3300	0000	L'exed	3300
3,3'-Dichlorobenzidine	330U	330U	3300	330U	0099	1,600U	330U
2,4-Dichlorophenol	330U	330U	330U	330U	0099	1,600U	330U
Diethylphthalate	330U	330U	330U	330U	D099	1,6000	330U
2,4-Dimethylphenol	330U	330U	330U	3300	D(999	1,643)[1	330U
Dimethyl Phthalate	330U	330U	330U	330U	06A)U	1,6(X)U	330U

Indicates compround analyzed for but not detected SVCXCs - Semicolitate organic compounds
 TPH - Total petroleum hyrocarbons

BH - Borehole DUP - Duplicate

ug/kg - micrograms per kilogram mg/kg - milligrams per kilogram

Analytical Results of Soil Samples Collected from Site 17 Minnesota Air National Guard Base Duluth, Minnesota Table J.1

: ii :	017-017 BH-2.0-2.5 7/19/94 9407703-13	017-017 BH-5.0-5.5 7/19/94 9407703-14	017-017 BH-9,0-9.5 7/19/94 9407703-15	017-018 BH-1.5-2.0 7/20/94 9407813-02	017-018 BH-5.0-5.5 7/20/94 9407813-03	017-017 BH-5.0-5.5       017-017 BH-5.0-5.5       017-018 BH-5.0-5.5       017-018 BH-5.0-5.5       017-018 BH-5.0-5.5       017-018 BH-5.0-9.5         7/19/94       7/20/94       7/20/94       7/20/94       7/20/94       9407813-03       9407813-04       9407813-05       9407813-05	017-018 BH-9.0-9.5 7/20/94 9407813-05
Analyte Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil
SVOCs (ug/kg)	,						
4,6-Dinitro-2-Methylphenol	2008	0008	2008	0008	1,600U	4,000U	2008
2,4-Dinitrophenol	0008	0008	D008	0008	1,600U	4,000U	2000
2,4-Dinitrotoluene	330U	330U	330U	330U	1099	1,600U	330U
2,6-Dinitrotoluene	330U	330U	330U	330U	0099	1,600	330U
1,2-Diphenylhydrazine	330U	330U	330U	330U	0099	1,600 U	330U
bis (2-Ethylhexyl) Phthalate	330U	820	330U	330U	D(99	1,600U	330U
Fluoranthene	330U	330U	330U	009	Ω099	1,600U	330U
Fluorene	330U	330U	330U	330U	N099	1,600U	330U
Hexachtorobenzene	330U	330U	330U	330U	66011	1,6000	330U
Hexachlorobutadiene	330U	330U	330U	330U	Ω099	1,600U	330U
Hexachloroethane	330U	330U	330U	330U	Ω099	1,600U	330U
Hexachlorocyclopentadiene	330U	330U	330U	330U	Ω099	1,600U	330U
Indeno (1,2,3-cd) Pyrene	330U	330U	330U	330U	0099	1,6000	330U
Isophorone	330U	330U	330U	330U	D099	1,600U	330U
2-Methylnaphthalene	330U	330U	330U	330U	Ω099	1,600U	330U
2-Methylphenol	330U	330U	330U	330U	Ω099	1,6000	330U
4-Methylphenol	330U	3300	330U	3300	0600	1,600	330U
Naphthalene	330U	330U	3300	330U	D099	1,600U	330U
2-Nitroaniline	330U	330U	330U	330U	n099	1,600U	330U
3-Nitroaniline	N(X)U	800U	N008	0008	1,600	4,000U	0008
4-Nitroaniline	8(x)(1	M008	800U	NOON	1,600U	4,000	NOO8
Nitrobenzene	330U	330U	330U	330U	U099	1,600	330U
2-Nitrophenol	330U	330U	330U	330U	Ω099	1,600U	330U
4-Nitrophenol	M008	800U	8000	0008	1,600U	4,000 U	0008
N-Nitrosodiphenylamine (1)	330U	330U	330U	330U	D099	1,600U	330U
N-Nitroso-Di-n-Propylamine	330U	330U	330U	330U	D(999	1,600U	330U
Di-n-Octyl Phthalate	330U	330U	330U	330U	0099	1,600U	330U
Pentachlorophenol	0008	0008	0008	1008	1,600U	7,000U	8(x))U
Phenanthrene	330U	330U	330U	470	0.099	1,600U	330U
Phenol	330U	330U	330U	330U	D099	1,600	330U
Pyrene	330U	330U	330U	997	U(x)	1,6000	330U
Pyridine	330U	330U	330U	330U	Ω099	1,600	330U
1,2,4-Trichlorobenzene	330U	330U	330U	330U	1099	1,600U	330U
2,4,5-Trichlorophenol	0008	0008	800U	0008	1,600U	4,000	D008
2,4,6-Trichlorophenol	330U	330U	330U	330U	Ω099	1,600U	330U
TPH (mg/kg)	140	210	110	260	250	27	12

U - Indicates compound analyzed for but not detected. SVOCs - Semivotitale organic compounds TPH - Total petroleum hyrocarbons

BH - Borehole DUP - Duplicate

Analytical Results of Soil Samples Collected from Site 17 Minnesota Air National Guard Base Duluth, Minnesota Table J.1

Location No.:	017-019 BH-2.0-2.5	017-019 BH-5.0-5.5	017-019 BH-9.0-9.5	017-020 BH-1.5-2.0 017-020 BH-5.0-5.5 017-020 BH-9.0-9.5	017-020 BH-5.0-5.5	017-020 BH-9.0-9.5
Sample Date:	7/20/94	7/20/94	7/20/94	7/20/94	7/20/94	7/20/94
Lab Sample No.:	9407813-06	9407813-07	9407813-08	9407813-09	9407813-10	9407813-11
Analyte	Soil	Soil	Soil	Soil	Soil	Soil
SVOCs (ug/kg)						
Acenaphthene	330U	330U	330U	330U	1,600U	3300
Acenaphthylene	330U	330U	330U	330U	1,600 U	330U
Aniline	330U	330U	330U	330U	1,600U	330U
Anthracene	330U	330U	330U	330U	1,600U	330U
Benzo (a) Anthracene	330U	330U	330U	330U	1,600U	330U
Benzo (b) Fluoranthene	330U	330U	330U	330U	1,600	330U
Benzo (k) Fluoranthene	330U	330U	330U	330U	1,6000	330U
Benzo (a) Pyrene	330U	330U	330U	330U	1,600U	330U
Benzoic Acid	1,600U	1,600U	1,6000	1,600U	8,000U	1,600U
Benzo(g,h,i)Perylene	33011	3300	330U	330U	1,640)(1	3300
Benzyl alcohol	3300	330U	330U	3300	1,6000	330U
4-Bromophenylphenyl ether	330U	330U	330U	330U	1,6000	330U
Butylbenzylphthalate	330U	330U	330U	3300	1,600U	3300
di-n-Butyl phthalate	330U	330U	330U	330U	1,6000	330U
Carbazole	330U	330U	330U	330U	1,600	330U
4 Chloroaniline	330U	330U	330U	330U	1,600U	330U
bis(2-Chloroethoxy)Methane	330U	330U	330U	330U	1,6000	330U
bis(2-Chloroethyl)Ether	330U	3300	330U	330U	1,600U	330U
bis(2-Chloroisopropyt)Ether	330U	330U	330U	33011	1,600	330U
4 Chloro-3 Methylphenol	3300	3300	330U	330U	1,6001	3300
2-Chloronaphthalene	330U	330U	330U	330U	1,6000	330U
2-Chtorophenol	330U	330U	330U	3300	1,600U	330U
4-Chlorophenylphenyl ether	330U	330U	330U	330U	1,6(x)U	330U
Chrysene	330U	3300	330U	3300	1,6000	3301
Dibenz(a,h)Anthracene	330U	330U	330U	330U	1,6000	330U
Dibenzofuran	330U	330U	330U	330U	1,600U	330U
1,2 -Dichlorobenzene	330U	3300	3300	330U	1,6600	33011
1,3-Dichlorobenzene	330U	330U	330U	330U	U.oxo.U	330U
1,4-Dichlorobenzene	330U	330U	330U	330U	1,6000	330U
3,3'-Dichlorobenzidine	330U	330U	330U	330U	1,600U	330U
2,4-Dichlorophenol	330U	330U	330U	330U	1,600U	330U
Diethylphthalate	330U	3300	330U	330U	1,600U	330U
2,4-Dimethylphenol	330U	3300	330U	330U	1,600U	330U
Dimethyl Phthalate	330U	3300	330U	330U	1,6000	3300

ug/kg - micrograms per kliogram mg/kg - milligrams per kliogram

Analytical Results of Soil Samples Collected from Site 17 Minnesota Air National Guard Base Duluth, Minnesota Table J.1

Location No.:	017-019 BH-2.0-2.5	017-019 BH-2.0-2.5   017-019 BH-5.0-5.5		017-020 BH-1.5-2.0	017-019 BH-9.0-9.5   017-020 BH-1.5-2.0   017-020 BH-5.0-5.5	017-020 BH-9.0-9.5
Sample Date:	7/20/94	7/20/94	7/20/94	7/20/94	7/20/94	7/20/94
Lab Sa	9407813-06	9407813-07	9407813-08	9407813-09	9407813-10	9407813-11
Analyte	Soil	Soil	Soil	Soil	Soil	Soil
SVOCs (ug/kg)						
4,6-Dinitro-2-Methylphenol	0008	0008	0008	0008	7,000U	M008
2,4-Dinitrophenol	0008	0008	0008	0008	4,000U	0008
2,4-Dinitrotoluene	330U	330U	330U	330U	1,600U	330U
2,6-Dinitrotoluene	330U	330U	330U	330U	1,600U	330U
1,2-Diphenylhydrazine	330U	330U	330U	330U	1,600U	330U
bis (2-Ethylhexyl) Phthalate	330U	330U	330U	330U	1,600	330U
Fluoranthene	3300	330U	330U	330U	1,600	330U
Fluorene	330U	330U	330U	330U	1,600U	330U
Пехасиюобендене	330U	330U	330U	330U	1,600U	330U
Hexachlorobutadiene	330U	330U	330U	330U	1,600U	330U
Hexachlorocthane	330U	330U	330U	330U	1,600U	330U
Hexachlorocyclopentadiene	330U	330U	330U	330U	1,600U	330U
Indeno (1,2,3-cd) Pyrene	330U	330U	330U	330U	1,600U	330U
Isophorone	330U	330U	330U	330U	1,600U	330U
2-Methylnaphthalene	330U	330U	330U	330U	1,600U	330U
2-Methylphenol	330U	330U	330U	330U	1,6000	330U
4-Methylphenol	330U	330U	330U	330U	1,600	330U
Naphthalene	330U	330U	330U	330U	1,6000	330U
2-Nitroaniline	330U	330U	330U	330U	1,6000	330U
3 Nitroaniline	8(x)(1	8001)	8000	0008	U(XX),4	N(X)N
4-Nitroaniline	0008	8001	800U	0008	4,0000	800U
Nitrobenzene	330U	330U	330U	330U	1,600U	330U
2-Nitrophenol	330U	330U	330U	330U	1,6000	330U
4-Nitrophenol	0000 n	8001	8(x)(1)	(1008	1)(XX)[†	80011
N-Nitrosodiphenylamine (1)	330U	3300	330U	330U	1,600 U	330U
N-Nitroso-Di-n-Propylamine	330U	330U	330U	330U	1,600U	330U
Di-n-Octyl Phthalate	330U	330U	330U	3300	1,600U	330U
Pentachlorophenol	8000	(10)8	8000	800U	4,000U	11008
Phenauthrene	330U	3300	330U	330U	1,6401	33011
Phenol	330U	3300	330U	33011	1,6001	330U
Pyrene	330U	3300	330U	330U	1,600U	330U
Pyridine	330U	330U	330U	330U	1,600U	330U
1,2,4-Trichlorobenzene	330U	3300	330U	330U	1,6(X)U	330U
2,4,5 Trichlomphenol	SONI	80011	80011	8000	(1(XX) ⁺	(108)8
2,4,6 Trichlorophenol	3300	3300	330U	330U	1,600U	330U
TPH (mg/kg)	66	noi	7	24	011	29
					2	

BH - Borehole DUP - Duplicate

U - Indicates compound analyzed for but not detected. SVOCs - Semivolitale organic compounds
TPH - Total petroleum hyrocarbons

ug/kg - micrograms per kilogram mg/kg - milligrams per kilogram

Analytical Results of Soil Samples Collected from Site 18 Minnesota Air National Guard Base Duluth, Minnesota Table J.2

Location No.: Sample Date:	018-006BH2-0.8-1.3 10/5/94	018-006BH2-1.3-1.7 10/5/94	018-006BH2-2.1-2.5 10/5/94	018-007BH2-1.3-1.7 10/5/94	018-007BH2-1.3-1.7 DUP 10/5/94	018-007BH2-2.1-2.5 10/5/94
Lab Sample No.:	9410180-04	9410180-05	9410180-06	9410180-01	9410180-02	9410180-03
VOCs (ug/kg) Matrix	Soll	Soil	Soil	Soil	Soil Soil	Soil
Acetone	10U	10U	100	10U	200	20U
Benzene	su	SU	l su	SU	25U	25U
Bromodichloromethane	5U	SU	50	SU	25U	25U
Bromoform	SU.	SU	50	50	25U	25U
Bromomethane	100	101	100	10U	50U	50U
2-Butanone	20U	20U	20U	2017	1000	1000
Carbon Disulfide	Su	50	su	5U	25U	25U
Carbon Tetrachloride	SU	SU	SU S	SU	25U	25U
Chlorobenzene	SU	SU	SU	SU	25U	25U
Chloroethane	100	101	10U	10U	50U	500
2-Chloroethylvinylether	100	100	10n	101	50U	500
Chloroform	SU	50	SU.	50	25U	25U
Chloromethane	100	100	100	10U	50U	50U
Dibromochloromethane	su.	SU	SU.	5U	25U	25U
1,1-Dichloroethane	50.	5U	SU	50	25U	25U
1,1-Dichloroethene	50.	5U	SU.	SU	25U	25U
1,2-Dichloroethane	5U	50	SU	5U	25U	25U
total -1,2-Dichloroethene	su.	su	50	50	25U	25U
1,2-Dichloropropane	50	50	SU	5U	25U	25U
cis-1,3-Dichloropropene	50	50	20	50	25U	25U
trans-1,3-Dichloropropene	SU	SU	SU	SU	25U	250
Ethylbenzene	SU	SU.	ns l	OS.	25U	25U
2-Hexanone	100	100	1001	10U	50U	50U
Methylene Chloride	511	50	ns	9.0	25U	250
4-Methyl-2-Pentanone	100	10U	100	10U	50U	30U
Styrene	5U	SU	50	50	25U	25U
1,1,2,2-Tetrachloroethane	SU	SU	50	5U	25U	25U
Tetrachloroethene	5U	SU	50	50	25U	250
Топиепе	SU	SU	SU	SU	25U	25U
1,1,1-Trichloroethane	SU	SU	SU.	50	25U	25U
1,1,2-Trichloroethane	SU	SU	50	50	25U	25U
Trichloroethene	50	50	SU	50	2511	250
Trichlorofluoromethane	20	511	503	90	250	250
Vinyl Acetate	100	100	001	10U	50U	50U
Vinyl Chloride	100	100	10U	Dot	20U	20C
Xylenes (total)	5U	511	5U	5U	25U	74

# Table J.3 Analytical Results of Soil Samples Collected from Site 21 Minnesota Air National Guard Base Duluth, Minnesota

	7/15/24	7/15/94	7/14/94	7/14/94		
Lab Sa	9407612-03	9407612-04	9407566-05	9407566-06	9407566-07	9407566-08
VOCs (ug/kg) Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Acetone	10U	10U	100	1001	100	1011
Benzene	SU	SU	SU	SU	50	5U
Bromodichloromethane	5U	SU	5U	SU	SU SU	5U
Bromoform	50	SU	50	SU	SU	50
Bromomethane	101	10U	101	100	1001	10U
2-Butanone	20U	20U	20U	20U	20U	20U
Carbon Disulfide	SU	50	SU	SU	50	50
Carbon Tetrachloride	SU	SU	50	SU	50	SU
Chlorobenzene	510	50	SU	511	SU	50
Chloroethane	100	10U	100	100	100	10U
2-Chloroethylvinylether	100	100	10U	100	100	10U
Chloroform	50	SU	50	5U	50	SU
Chloromethane	100	100	100	100	10U	100
Dibromochloromethane	5U	5U	SU	SU	SU	SU
1,1-Dichloroethane	50	50	SU	SU	ns	su
1,1-Dichloroethene	50	50	SU	SU	su	50
1,2-Dichloroethane	50	50	SU	50	SU	SU
total -1,2-Dichloroethene	50	SU	SU	50	50	50
1,2-Dichloropropane	SU	SU	su	SU	SU	su
cis-1,3-Dichloropropene	50	SU	SU	5U	SU	su
trans-1,3-Dichloropropene	50	SU	50	SU	50	50
Ethylbenzene	SU	SU.	5U	50	51.)	5U
2-Hexanone	100	100	100	100	10U	10U
Methylene Chloride	5U	SU	SU	5U	SU	50
4-Methyl-2-Pentanone	10U	100	100	100	100	100
Styrene	SU	SU	50	SU	SU	5U
1,1,2,2-Tetrachlorocthane	5U	SU	SU	5U	SU	50
Tetrachloroethene	50	SU	50	50	SU	5U
Toluene	50	SU	SU	50	SU	SU
1,1,1-Trichloroethane	SU	50	SU	5U	5U	51)
1,1,2-Trichloroethane	5U	50	50	50	SU	50
Trichloroethene	SU	SU	SU	SU	SU	50
Trichlorofluoromethane	SU	5U	SU	SU	50	SU
Vinyl Acetate	100	100	100	100	100	10U
Vinyl Chloride	10U	10U	100	100	100	10U
(Xylenes (total)	5U	5U	SU	SU	50	50

Table J.3
Analytical Results of Soil Samples Collected from Site 21
Minnesota Air National Guard Base
Duluth, Minnesota

Sample Date: Lab Sample No.:	021-017 BH-6.0-6.5 DUP 7/15/94 9407612-03	021-017 BH-14.0-14.5 7/15/94 9407612-04	021-018 BH-1.5-2.0 7/14/94 9407566-05	021-018 BH-10.0-10.5 7/14/94 9407566-06	Location No.: 021-017 BH-6.0-6.5 DUP   021-017 BH-14.0-14.5   021-018 BH-10.0-10.5   021-018 BH-14.0-14.5   021-018 BH-14.0-14.5 DUP   021-018 BH-14.0-14.5	21-018 BH-14.0-14.5 DUP 7/14/94 9407566-08
SVOCs (ug/kg) Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Acenaphthene	330U	330U	1,000	330U	330U	330U
Acenaphthylene	330U	330U	1099	330U	330U	330U
Aniline	330U	330U	D099	330U	330U	330U
Amhracene	330U	330U	1,900	330U	330U	330U
Вепхо (а) Алthrасеце	330U	330U	6,400	330U	330U	3300
Benzo (b) Fluoranthene	330U	330U	9,300	330U	330U	330U
Benzo (k) Fluoranthene	3300	330U	4,800	330U	330U	330U
Benzo (a) Pyrene	3300	330U	5,500	330U	330U	330U
Benzoie Acid	1,600	1,6000	3,200U	1,600	1,6000	1,600 U
Benzo(g,h,i)Perylene	330U	330U	3,500	330U	330U	330U
Benzyl alcohol	330U	33011	D099	330U	330U	330U
4-Bromophenylphenyl ether	330U	330U	0099	330U	330U	330U
Butylbenzylphthalate	330U	33011	N099	330U	330U	330U
di-n-Butyl phthalate	330U	330U	0099	330U	330U	330U
Carbazole	330U	330U	1,500	330U	330U	330U
4-Chloroaniline	330U	3300	0099	330U	330U	330U
bis(2-Chloroethoxy)Methane	330U	330U	D099	330U	330U	330U
bis(2-Chloroethyl)Ether	330U	3300	0000	330U	3300	3300
bis(2-Chloroisopropyl)Ether	330U	330U	0099	330U	330U	330U
4-Chloro-3-Methylphenol	330U	330U	D099	330U	330U	33011
2-Chloronaphthalene	330U	330U	0099	330U	330U	330U
2-Chlorophenol	3300	3300	11(999	330U	330U	330U
4-Chlorophenylphenyl ether	330U	330U	0099	330U	330U	330U
Chrysene	330U	3300	7,000	330U	3300	3300
Dibenz(a,h)Anthracene	3300	330U	П099	330U	330U	330U
Dibenzofuran	330U	330U	0099	330U	330U	330U
1,2 -Dichlorobenzene	330U	330U	0009	330U	330U	330U
1,3-Dichlorobenzene	330U	330U	П099	330U	330U	330U
1,4-Dichlorobenzene	330U	330U	0099	330U	330U	3300
3,3'-Dichlorobenzidine	330U	330U	1099	330U	330U	330U
2,4-Dichlorophenol	330U	330U	0099	330U	330U	330U
Diethylphthalate	330U	330U	D099	330U	330U	330U
2,4-Dimethylphenol	330U	330U	D(999	330U	330U	330U
Dimethyl Phthalate	330U	330U	0099	330U	330U	330U

Table J.3
Analytical Results of Soil Samples Collected from Site 21
Minnesota Air National Guard Base Duluth, Minnesota

Sample (Control Proc.)         TittS94         711594         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694         711694	Location No.:   02	021-017 BH-6.0-6.5 DUP	021-017 BH-14.0-14.5	021-018 BH-1.5-2.0	021-018 BH-10.0-10.5	021-018 BH-14.0-14.5	021-018 BH-14.0-14.5 DUP
Lab Sample No.   Solid   Sol	Sample Date:	7/15/94	7/15/94	7/14/94	7.14/9	7/14/94	7/14/94
Matrix   Soil   Soil   Soil   Soil   Soil   Soil	Lab Sample No.:	9407612-03	9407612-04	9407566-05	9407566-06	9407566-07	9407566-08
Second   S		Soil	Soil	Soll	Soil	Soil	Soil
800U 800U 800U 800U 800U 800U 900U 900U	4,6-Dinitro-2-Methylphenol	D(X)8	8000	1,600U	8000	8000	8000
F. 3301 3100 6600 3301 3301 3300 cell 3301 cel	2,4-Dinitrophenol	800U	M008	1,600U	0008	N008	0008
Fe 330U 330U 660U 330U 330U 60U 330U 330U	2,4-Dinitrotoluene	330U	330U	Ω099	330U	330U	330U
Fig. 1300 1300 6600 3300 3300 3300 3300 3300	2,6-Dinitrotoluene	330U	330U	1099	330U	330U	3300
halase         330U         <	1,2.Diphenylhydrazine	330U	330U	D099	330U	330U	3300
330U 330U 330U 330U 330U 330U 330U 330U	bis (2-Ethyllicxyl) Phthalate	3300	330U	Ω099	330U	330U	330U
330U	Fluoranthene	330U	330U	14,000	330U	330U	330U
diene 330U 330U 530U 330U 330U diene 330U 330U 330U 330U 330U 330U 330U 330	Fluorene	330U	330U	920	330U	330U	3300
330U   330U   330U   330U   330U	Hexachlorobenzene	3300	330U	Д099	330U	330U	330U
diction: 330U 330U 330U 330U 330U 330U 330U 330	Hexachlorobutadiene	330U	330U	0099	3300	330U	330U
dicute 330U 330U 330U 330U 330U 330U 330U 330	Hexachloroethane	330U	330U	D099	330U	330U	330U
230U 330U 330U 660U 330U 330U 330U 330U 3	Hexachlorocyclopentadiene	330U	330U	0099	330U	330U	330U
330U 330U 660U 330U 330U 330U 330U 330U	Indeno (1,2,3-cd) Pyrene	330U	330U	3,900	330U	330U	330U
330U 330U 330U 330U 330U 330U 330U 330U	Isophorone	330U	330U	11099	330U	330U	3300
330U 330U 330U 330U 330U 330U 330U 330U	2-Methylnaphthalene	330U	330U	1099	330U	330U	330U
330U         330U         660U         330U         330U           330U         830U         660U         330U         800U           800U         800U         1,600U         800U         800U           800U         800U         1,600U         800U         800U           330U         800U         1,600U         800U         800U           330U         330U         660U         330U         800U           800U         330U         660U         330U         800U           800U         330U         660U         330U         330U           1mine         330U         800U         330U         330U           1mine         330U         800U         330U         330U           1mine         330U         330U         330U         330U           1000         330U         800U         330U         330U           1000         330U         330U         330U	2-Methylphenol	330U	330U	1099	330U	330U	330U
330U 860U 1,60U 800U 800U 800U 800U 800U 800U 800U 8	4-Methylphenol	330U	330U	D099	330U	330U	330U
RIAD BOOL         BOOL         1,600U         BOOL         BOOL           800U         800U         1,600U         800U         800U           330U         330U         660U         330U         330U           330U         330U         660U         330U         800U           400U         800U         1,600U         800U         800U           800U         330U         660U         330U         800U           14mine         330U         660U         330U         330U           14mine         330U         660U         330U         330U           14mine         330U         660U         330U         330U           14mine         330U         800U         330U         330U           14mine         330U         660U         330U         330U           14mine         330U         800U         330U         330U           14mine         330U         800U         330U         330U           14mine         330U         330U         330U         330U           14mine         330U         330U         330U         330U           14mine         330U         330U	Naphthalene	330U	3301	11099	330U	330U	330U
800U         1,600U         800U         800U         800U           800U         800U         1,600U         800U         800U           330U         330U         330U         800U         800U           800U         330U         1,600U         800U         800U           800U         800U         1,600U         800U         800U           10c(1)         330U         330U         330U         330U           10c(1)         330U         330U	2-Nitroaniliuc	NOOR	8001	1,6001	8000	8(0)	8000
800U         800U         800U         800U           330U         330U         660U         330U         330U           800U         800U         1,600U         330U         330U         330U           10e (1)         330U         800U         800U         800U         330U         330U           10e (1)         330U         800U         1,600U         800U         330U         330U           10e (1)         330U         800U         1,600U         330U         330U         330U           10e (1)         330U         8,800         330U         330U         330U         330U           10e (1)         330U         660U         330U         330U         330U         330U	3-Nitroaniline	800U	0008	1,600U	0008	8000	8000
330U         330U         660U         330U         330U         330U           330U         330U         660U         330U         800U         800U         800U         800U         800U         800U         800U         800U         800U         330U         330U         330U         330U         330U         330U         330U         330U         800U         800U         1,600U         800U         800U         330U	4-Nitroaniline	800U	0008	1,600U	MO00	M008	N008
ae (1) 330U 800U 800U 1,600U 800U 800U 800U 800U 800U 800U 800U	Nitrobenzene	330U	330U	1099	330U	330U	330U
ac (1)         800U         <	2-Nitrophenol	330U	330U	1099	330U	330U	330U
ne (1)         330U         <	4-Nitrophenol	800U	MO08	1,600U	NO08	8000	8000
Lamine         330U         800U         <	N-Nitrosodiphenylamine (1)	330U	330U	D099	330U	330U	330U
330U         800U         800U <th< td=""><td>N-Nitroso Di-n-Propylamine</td><td>330U</td><td>330U</td><td>11099</td><td>330U</td><td>3300</td><td>330U</td></th<>	N-Nitroso Di-n-Propylamine	330U	330U	11099	330U	3300	330U
8(A)U         8(A)U         1,64A)U         8(A)U         8(A)U           330U         330U         330U         330U         330U           330U         330U         660U         330U         330U           330U         330U         660U         330U         330U           6         330U         660U         330U         330U           800U         800U         800U         800U         800U         800U           330U         330U         660U         330U         800U         800U	Di a Octyl Phthalate	330U	3300	[1099	330U	330U	3300
330U         330U         8,800         330U         330U           330U         330U         660U         330U         330U           330U         330U         660U         330U         330U           6         330U         660U         330U         330U           800U         800U         1,60U         800U         800U           330U         330U         660U         330U         800U	Pentachforophenol	8000	1008	1,600U	8000	0008	8(X)U
330U         800U         800U <th< td=""><td>Phenanthrene</td><td>330U</td><td>330U</td><td>8,800</td><td>330U</td><td>330U</td><td>330U</td></th<>	Phenanthrene	330U	330U	8,800	330U	330U	330U
330U         800U         800U <th< td=""><td>Phenol</td><td>330U</td><td>330U</td><td>(1099</td><td>330U</td><td>3300</td><td>330U</td></th<>	Phenol	330U	330U	(1099	330U	3300	330U
e 330U 330U 330U 330U 330U 330U 330U 330	Pyrene	330U	3300	12,000	330U	3300	3.00
e         330U         330U         660U         330U         330U           800U         800U         1,600U         800U         800U           330U         330U         660U         330U         330U	Pyridine	3300	330U	D099	330U	330U	3300
800U 800U 1,600U 800U 800U 800U 800U 330U 330U	1,2,4-Trichlorobenzene	330U	330U	D099	330U	330U	330U
3300 3300 3300 3300 3300	2,4,5-Trichlorophenol	800U	800U	1,600U	0008	0008	2008
	2,4,6-Trichlorophenol	330U	330U	0000	330U	330U	330U

U - Indicates compound analyzed for but not detected. SVOCs - Semivolatile organic compounds DMP - Duplicate

Table J.3
Analytical Results of Soil Samples Collected from Site 21
Minnesota Air National Guard Base
Duluth, Minnesota

Location No.: Sample Date:	S DUP	-14.5	021-018 BH-1.5-2.0 7/14/94	021-018 BH-10.0-10.5 7/14/94	021-018 BH-14.0-14.5 7/14/94	021-018 BH-1.5-2.0   021-018 BH-10.0-10.5   021-018 BH-14.0-14.5   021-018 BH-14.0-14.5 DUP   7/14/94   7/14/94   7/14/94
Lab Sample No.:	9407612-03 Soil	9407612-04 Soil	9407566-05 Soil	9407566-06 Soil	940/266-07 Soil	940/566-08 Soil
TPH (mg/kg)	D01	22	125	15	28	13
Pesticides/PCBs (ng/kg)		•				
a-BHC	0.67U	0.67U	0.67U	0.67U	U.67U	U.67U
b-BHC	1.70	1.70	1.70	U7.1	U.7U	1.70
d-BHC	1.70	1.7U	1.70	1.70	1.70	U.7.1
g-BHC	1.0U	1.00	1.0U	1.0U	1.0U	1.0U
Heptachlor	1.00	1.0U	1.00	1.0U	1.00	1.0U
Aldrin	0.67U	0.67U	U.67U	0.67U	U.67U	U76.0
Heptachlor Epoxide	1.7U	1.7U	1.70	1.7U	U.7U	1.7U
Endosulfan 1	1.7U	1.7U	1.70	1.7U	07.1	1.7U
Dieldrin	0.33U	0.33U	0.33U	0.33U	0.33U	0.33U
Endrin	1.30	1.30	1.30	1.30	1.30	1.3U
Endosulfan II	1.0U	1.00	1.0U	1.0U	1.0U	1.00
4,4'-DDT	2.3U	2.3U	2.3U	2.3U	2.3U	2.3U
Endrin Aldehyde	3.30	3.3U	3.3U	3.30	3.30	3.3U
Methoxychlor	1.70	1.70	1,711	1.70	1.711	1.70
a-Chlordane	0.33U	0.33U	0.33U	0.33U	0.33U	0.33U
g-Chlordane	1.7U	1.7U	1.7U	1.7U	U.7.U	1.7U
1,4'-DDE	0.67U	0.67U	U.67U	U.67U	U.67U	0.67U
4,4'-DDD	3.3U	3.30	3.30	3.30	3.30	3.30
Endosulfan Sulfate	3.3U	3.30	3.3U	3.3U	3.3U	3.3U
Endrin Ketone	3.3U	3.3U	3.3U	3.3U	3.3U	3.3U
Foxaphene	33U	33U	33U	33U	33U	330

TPH - Total petroleum hydrocarbons PCBs - Polychtoronated biphenyts

ug/kg - micrograms per kilogram mg/kg - milligrams per kilogram

Table J.3
Analytical Results of Soil Samples Collected from Site 21
Minnesota Air National Guard Base Duluth, Minnesota

Location No.: (Sample Date:	Location No.: 021-017 BH-6.0-6.5 DUP Sample Date: 7/15/94	021-017 BH-14.0-14.5 7/15/94	021-018 BH-1.5-2.0 7/14/94	021-018 BH-10.0-10.5	021-018 BH-14.0-14.5 7/14/94	021-018 BH-1.5-2.0   021-018 BH-10.0-10.5   021-018 BH-14.0-14.5   021-018 BH-14.0-14.5 DUP   7/14/94   7/14/94
Lab Sample No.:	9407612-03	9407612-04	9407566-05	9407566-06	9407566-07	9407566-08
Matrix	Soil		Soil	Soil	Soil	Section Soil
Pesticides/PCBs (ug/kg)						
Chlordane (technical)	1.7U	1.7U	1.7U	1.70	1.7U	1.7U
PCB-1016	17U	ULI	170	07.1	UTI	17U
PCB-1221	171	170	U71	170	171	U7.1
PCB-1232	17U	17U	171	U7.1	U71	U71
PCB-1242	17U	17U	17U	17U	11/1	17U
PCB-1248	171	170	17U	170	U71	U11
PCB-1260	170	U7.1	U71	U71	U7.1	17U
Metals (mg/kg)						
Silver	30	30	30	3U	30	30
Aluminum	10,300	6,760	8,680	11,000	9,180	8,510
Arsenic	-	IU.	1U			10
Beryllium	2U	2U	2U	2U	2U	210
Cadmium	0.8U	0.80	0.8U	0.8U	0.8U	0.8U
Chromium	21	6	29	22		13
Copper	64.4	31.2	40.8	69.2	0.14	9.77
Mercury	0.10	0.10	0.1U	0.1U	0.10	0.10
Nickel	25	13	27	24	20	17
Lead	3.1	1.7	16	2.6	2.6	2.4
Antimony	10	10	ΩI	111	110	10
Setenium	0.8U	0.8U	0.8U	0.80	0.8U	0.80
Fhallium	0.4U	0.4U	0.4U	0.4U	0.4U	0.4U
Zinc	47	27	55	46	36	54

U - Indicates compound analyzed for but not detected. BH - Borehole DUP - Duplicate

ug/kg - micrograms per kilogram mg/kg - milligrams per kilogram

Analytical Results of Soil Samples Collected from Site 21
Minnesota Air National Guard Base
Duluth, Minnesota

Location No.:	021-015 BH-1.5-2.0	021-015 BH-6.0-6.5	021-016 BH-1.5-2,0	021-016 BH-6.0-6.5	021-017 BH-1.5-2.0	021-017 BH-6.0-6.5
Sample Date:	7/14/94	7/14/94	7/14/94	7/14/94	7/15/94	7/15/94
Tap X	10-00C/0#A	70-000/00%	CD-00C/04K	10-00c/04x	10-710/04-6	70-710/074
VOCs (ug/kg) Matrix	Soil	To.	Noti	Soil	XOII	Soil
Acetone	100	100	10U	13	100	100
Всихене	513	50	517	51.)	50	50
Bromodichloromethane	50	SU	SU	SU	90	50
Bromoform	5U	SU	SU	ns l	SU	50
Bromomethane	100	100	10U	10U	100	10U
2-Butanone	20U	200	200	201	2017	200
Carbon Disulfide	513	511	5(1)	511	513	50
Carbon Tetrachloride	511	SU	SU	50	SU	50
Chlorobenzene	SU	SU	SU	ns J	SU	SU
Chloroethane	100	100	100	D01	100	10U
2-Chloroethylvinylether	100	1010	100	1001	100	1001
Chloroform	20	50	SU	) su	50	SU
Chloromethane	100	100	100	D01	1301	1013
Dibromochloromethane	50	SU	5.0	SU SU	SU	50
1,1-Dichloroethane	50	SU	SU	511	2.0	50
1,1-Dichloroethene	SU	SU	SU	ns [	510	SU SU
1,2-Dichloroethane	5U	SU	DS.	513	511	SU
notal -1,2-Dichloroethene	SU	SU	SU	50	SU	SU
1,2-Dichloropropane	50	20	50	50.	ns	SU
cis-1,3-Dichloropropene	SU	SU	SU	SU	su	5U
trans-1,3-Dichloropropene	20	SU	SU	50	su	SU
Ethylbenzene	SU	su	SU	DS	SU	ΣŪ
2-Hexanone	100	100	100	10U	100	10U
Methylene Chloride	SU	SU	SU	DS	ns	50
4-Methyl-2-Pentanone	10U	100	100	D01	100	100
Styrene	SU	SU	511	ns l	su	50
1,1,2,2-Tetrachloroethane	SU	SU	SU	SU	su	50
Tetrachloroethene	SU	SU	513	50	SU	50
Toluene	SU	SU	SU	SU	SU	5U
1,1,1-Trichloroethane	50	SU	SU	DS	ns	SU
1,1,2-Trichloroethane	SU	SU	5U	50	SU	5U
Trichloroethene	SU	SU	SU	DS	SU	50
Trichlorofluoromethane	50	SU	5U	115	su	50
Vinyl Acetate	100	100	100	100	100	100
Vinyl Chloride	100	100	10U	100	100	100
(Xylenes (total)	SU	5U	SU	SU	50	5U

Analytical Results of Soil Samples Collected from Site 21 Minnesota Air National Guard Base Duluth, Minnesota Table J.3

Location No.:	1	021-015 BH-1.5-2.0   021-015 BH-6.0-6.5		021-016 BH-1.5-2.0 021-016 BH-6.0-6.5	021-017 BH-1.5-2.0	021-017 BH-1.5-2.0   021-017 BH-6.0-6.5
Sample Date:	ate: 7/14/94	7/14/94	7/14/94	7/14/94	7/15/94	7/15/94
Lab Sample No.:	io.: 9407566-01	9407566-02	9407566-03	9407566-04	9407612-01	9407612-02
SVOCs (ug/kg) Ma	trix  Soil	Soil	Soil	Soil	Soil	Soil
Acenaphthene	330U	330U	Ω099	330U	330U	330U
Acenaphthylene	330U	330U	0099	330U	330U	330U
Aniline	330U	330U	Ω099	330U	330U	330U
Anthracene	330U	330U	0999	330U	330U	330U
Benzo (a) Anthracene	330U	330U	0099	330U	330U	330U
Benzo (b) Fluoranthene	330U	330U	Ω099	330U	330U	330U
Benzo (k) Fluoranthene	330U	330U	N099	330U	330U	330U
Benzo (a) Pyrene	330U	330U	0099	330U	330U	330U
Benzoic Acid	1,600U	1,600U	3,200U	1,600U	1,600U	1,600U
Benzo(g,h,i)Perylene	330U	330U	0099	330U	330U	330U
Benzyl alcohol	330U	330U	0099	330U	330U	330U
4-Bromophenylphenyl ether	330U	33011	Ω099	330U	330U	33011
Butylbenzylphthalate	330U	3300	D099	330U	330U	3300
di-n-Butyl phthalate	330U	330U	0(9)	330U	330U	330U
Carbazole	330U	330U	D099	330U	330U	330U
4-Chloroaniline	330U	330U	Ω099	330U	330U	33011
bis(2-Chloroethoxy)Methane	330U	330U	DO99	330U	330U	330U
bis(2-Chloroethyl)Ether	330U	330U	D(999	330U	330U	330U
bis(2-Chloroisopropyl)Ether	330U	330U	D099	330U	330U	330U
4-Chloro-3-Methylphenol	330U	330U	Π099	330U	3300	330U
2-Chloronaphthalene	330U	330U	N099	330U	330U	330U
2-Chlorophenol	330U	330U	0099	330U	330U	330U
4 Chlorophenylphenyl ether	330U	3300	(1000)	3300	330U	3300
Chrysene	3300	330U	0000	330U	330U	3300
Dibenz(a,h)Anthracene	330U	330U	n099	330U	330U	330U
Dibenzofuran	330U	330U	0099	330U	330U	330U
1,2 -Dichlorobenzene	330U	33011	D(999	330U	330U	3300
1,3-Dichlorobenzene	330U	33011	0099	330U	330U	330U
1,4-Dichlorobenzene	330U	330U	D(999	330U	330U	3300
3,3'-Dichlorobenzidine	330U	3300	D099	330U	3300	3300
2,4-Dichlorophenol	330U	3300	0999	330U	330U	330U
Diethylphthalate	33011	3300	0000	330U	330U	3300
2,4-Dimethylphenol	330U	3300	N099	3300	330U	330U
Dimethyl Phthalate	330U	330U	0999	330U	330U	330U

Table J.3
Analytical Results of Soil Samples Collected from Site 21
Minnesota Air National Guard Base
Duluth, Minnesota

1	021-015 BH-1.5-2.0	021-0	021-016 BH-1.5-2.0	021-016 BH-1.5-2.0 021-016 BH-6.0-6.5	5-2.0	05170
Sample Date: Lab Sample No.:	7/14/94 9407566-01	7/14/94 9407566-02	7/14/94 9407566-03	7/114/94 9407566-04	7/15/94 9407612-01	7/15/94
SVOCs (ug/kg) Matrix	Soll	Soll	Soll	Soil	Soil	Soil
hylphenol	Л008	0008	1,600U	0008	Л008	0008
2,4-Dinitrophenol	0008	M008	1,600U	0008	0008	800U
2,4-Dinitrotoluene	330U	330U	0.099	330U	330U	330U
2,6-Dinitrotoluene	330U	330U	N099	330U	330U	330U
1,2-Diphenylhydrazine	330U	330U	0099	330U	330U	330U
bis (2-Ethyllicxyl) Phthalate	330U	330U	Ω099	330U	330U	330U
Fluoranthene	330U	330U	Π099	330U	330U	330U
Fluorene	330U	330U	D099	330U	330U	330U
Hexachlorobenzene	330U	330U	0099	330U	330U	330U
Hexachlorobutadiene	330U	330U	0099	330U	330U	330U
Hexachloroethane	330U	330U	Ω099	330U	330U	330U
Hexachlorocyclopentadiene	330U	330U	Ω099	330U	330U	330U
Indeno (1,2,3-cd) Pyrene	330U	330U	Π099	330U	330U	330U
Isophorone	330U	330U	n099	330U	330U	330U
2-Methylnaphthalene	330U	330U	0099	330U	330U	330U
2-Methylphenol	330U	330U	Ω099	330U	330U	330U
4-Methylphenol	330U	330U	Ω099	330U	330U	330U
Naphthalene	330U	330U	0.099	330U	3300	330U
2-Nitroaniline	0008	800U	1,600 U	0008	D008	0008
3-Nitroaniline	0008	8001	1,600U	0008	0008	0008
4-Nitroaniline	8000U	8(X)U	1,600U	8(X)[I]	M(X)U	800U
Nitrobenzene	330U	3300	0.099	3300	330U	330U
2-Nitrophenol	330U	330U	n099	330U	330U	3300
4-Nitrophenol	M0008	U(X)8	1,600U	0008	MO08	0008
N-Nitrosodiphenylamine (1)	330U	330U	11099	330U	330U	330U
N-Nitroso-Di-n-Propyfamine	3301	330U	11099	330U	330U	33011
Di n Octyl Phthalate	330U	330U	Ω099	3300	330U	330U
Pentachlorophenol	8000	(J(X)8	1,600U	M008	D008	D008
Phenanthrene	330U	330U	1099	330U	330U	330U
Phenol	330U	330U	1)(999	330U	330U	330U
Pyrene	330U	3300	664011	3300	33011	3301
Pyruline	3300	3300	D(99	330U	330U	330U
1,2,4-Trichlorobenzene	330U	330U	D099	330U	330U	330U
2,4,5-Trichlorophenol	800U	D(X)8	1,600U	0008	0008	0008
2,4.6 Trichlorophenol	330U	330U	666)[]	330U	330U	330U

ug/kg - micrograms per kilogram mg/kg - milligrams per kilogram

TPH - Total petroleum hydrocarbons PCBs - Polychloronated biphenyls

Analytical Results of Soil Samples Collected from Site 21 Minnesota Air National Guard Base Duluth, Minnesota Table J.3

Location No.:	Location No.: 021-015 BH-1,5-2.0	021-015 BH-6.0-6.5	021-016 BH-1.5-2.0	021-016 BH-6.0-6.5	021-017 BH-1.5-2.0	021-017 BH-6.0-6.5
Sample Date: Lab Sample No.:	7/14/94 9407566-01	7/14/94 9407566-02	7/14/94 9407566-03	7/14/94 9407566-04	7/15/94 9407612-01	7/15/94 9407612-02
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
TPH (mg/kg)	91	15	<i>L</i> 9	101	98	†1
Pesticides/PCBs (ug/kg)		-				
a-BHC	0.67U	0.67U	0.67U	0.67U	U.67U	0.67U
b-BHC	1.70	1.70	1.70	1.70	1.70	U.7.U
d-BIIC	1.70	1.7U	1.7U	1.70	U.7U	1.7U
g-BHC	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U
Heptachlor	1.00	1.00	1.0U	1.0U	1.00	1.0U
Aldrin	0.67U	0.67U	U.67U	U.67U	0.67U	0.67U
Heptachlor Epoxide	1.70	1.7U	1.7U	07.1	1.7U	0.70
Endosulfan I	1.70	1.7U	1.7U	1.7U	1.7U	1.7U
Dieldrin	0.33U	0.33U	0.33U	0.33U	0.33U	0.33U
Endrin	1.3U	1.30	1.3U	1.3U	1.30	1.3U
Endosulfan II	1.00	1.0U	1.00	1.00	1.00	1.00
4,4'-DDT	2.30	2.3U	2.3U	2.3U	2.3U	2.3U
Endrin Aldehyde	3.30	3.3U	3.3U	3.3U	3.3U	3.3U
Methoxychlor	1.7U	1.7U	1.70	1.7U	1.70	U.7U
a Chlordane	0.33U	0.33U	0.33U	0.33U	0.33U	0.33U
g-Chlordane	U.7U	1.7U	1.7U	1.7U	U.7U	1.7U
4,4'-DDE	0.67U	0.67U	U.67U	0.67U	0.67U	0.67U
H,4'-DDD	3.30	3.3U	3.3U	3.3U	3.3U	3.3U
Endosulfan Sulfate	3.3U	3.3U	3.3U	3.3U	3.3U	3.3U
Endrin Ketone	3.3U	3.3U	3.3U	3.31)	3.3U	3.3U
Гохарнене	33U	33U	33U	33U	33U	33U

Table J.3
Analytical Results of Soil Samples Collected from Site 21
Minnesota Air National Guard Base
Duluth, Minnesota

Location No.:	021-015 BH-1.5-2.0	021-015 BH-6.0-6.5	021-016 BH-1.5-2.0	021-016 BH-6.0-6.5	021-017 BH-1.5-2.0	021-017 BH-6.0-6.5
Lab Sample No.:	9407566-01	9407566-02	9407566-03	9407566-04	9407612-01	9407612-02
Watrix Watrix	Soil	Soil	Soil	Soil	Soil	Soil
Pesticides/PCBs (ug/kg)						
Chlordane (technical)	1.7U	1.7U	1.70	1.70	1.7U	1.70
PCB-1016	170	17U	170	U7.1	17U	U7.1
PCB-1221	17.0	170	170	170	U71	17U
PCB-1232	171	170	170	171	1771	170
PCB-1242	07.1	170	17.0	17.0	170	U71
PCB-1248	170	170	170	170	170	17.0
PCB-1260	170	170	U71	170	17U	U71
Metals (mg/kg)						
Silver	30	30	30	3U	31)	30
Aluminum	11,400	14,400	8,550	10,500	10,800	11,400
Arsenic	1	2	110	2	111	1
Beryllium	21)	20	2U	211	211	20.
Cadmium	080	0.80	0.8U	0.8U	0.8U	0.8U
Chromium	20	29	18	26	61	20
Соррег	55.2	42.4	50.2	31.3	34.2	64.1
Mercury	0.1U	0.10	0.10	0.1U	0.10	0.10
Nickel	27	6	25	7.	61	2.5
l.cad	3.7	4.3	6.9	3.1	3.9	2.7
Antimony	DI.	ΩI	10	110	1IC	110
Selenium	0.8U	0.8U	0.8U	0.8U	0.8U	0.80
Thallium	0.4U	0.40	0.40	0.40	DF:0	0.40
Zinc	52	37	90	25	35	17

Analytical Results of Soil Samples Collected from Site 21
Minnesota Air National Guard Base
Duluth, Minnesota Table J.3

Sample Date:	021-019 BH-1.0-1.5 7/14/94 9407565-00	021-019 BH-6.0-6.5 7/14/94	021-019 BH-10.0-10.5 7/14/94 0407566-11	021-019 BH-6.0-6.5   021-019 BH-10.0-10.5   021-019 BH-1.5-2.0   7/14/94   7/14/94   7/14/94   7/14/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7/13/94   7	021-020 BH-1.5-2.0 7/13/94 0407471.00	021-020 BH-6.0-6.5 7/13/94 0407473-10
VOCe (119/kg) Matrix	Soil	Sail	Soil	Soil	Soil	Soil
	100	10U	10U	10U	100	85
Benzene	SU	SU	17	∞	SU	140
Bromodichloromethane	SU	SU	SU	SU	5U	SU
Bromoform	SU.	SU	50	SU	SU	SU SU
Bromomethane	100	100	10U	100	10U	10n
2-Butanone	20U	20U	20U	20U	20U	31
Carbon Disulfide	50	SU	50	SU	50	SU
Carbon Tetrachloride	SU	51.1	SU	SU	50	SU
Chlorobenzene	SU	SU	5U	SU	SU	su
Chloroethane	100	10U	100	100	100	10U
2-Chloroethylvinylether	10U	10U	100	10U	10U	10U
Chloroform	SU	50	SU	50	SU	SU
Chloromethane	100	100	100	100	101	100
Dibromochloromethane	SU	SU	SU.	5U	50	SU
1,1-Dichloroethane	SU	SU	50	SU	50	os.
1,1-Dichloroethene	SU	SU	50	SU	SU.	su
1,2-Dichloroethane	50	5U	SU	SU	50	54
total -1,2-Dichloroethene	SU	SU	SU	5U	SU	SU
1,2-Dichloropropane	50	SU	SU	50	SU	SU
cis-1,3-Dichloropropene	SU	50	SU	SU	50	50
trans-1,3-Dichloropropene	SU	SU	SU.	SU	50	50
Ethylbenzene	SU	SU	SU	5U	SU	SU
2-Hexanone	100	D01	100	100	100	10U
Methylene Chloride	511	SU	50	51)	50	50
4-Methyl-2-Pentanone	not	100	100	101	100	10U
Styrene	SU	SU.	50	SU	SU.	5U
1,1,2,2-Tetrachloroethane	SU	SU	50	SU	50	5U
Tetrachloroethene	51)	51)	50	513	80	511
Foluene	SU	513	50	50	50	-
1, 1, 1-Trichloroethane	50	SU	SU	SU	5U	50
1,1,2-Trichloroethane	50	SU SU	SU	50	SU.	SU
Trichloroethene	50	SU	50	SU	SU	50
Trichtorofluoromethane	50	SU	SU	513	50	50
Vinyl Acetate	100	10n	100	100	100	100
Vinyl Chloride	100	100	100	100	100	100
Xylenes (total)	50	5U	SU	5U	SU	50

Table J.3

Analytical Results of Soil Samples Collected from Site 21

Minnesota Air National Guard Base

Duluth, Minnesota

Location No.: Sample Date: Lab Sample No.:	021-019 BH-1.0-1.5 7/14/94 9407566-09	021-019 BH-6.0-6.5 7/14/94 9407566:10	021-019 BH-6.0-6.5 021-019 BH-10.0-10.5 7/14/94 7/14/94 9407565-10	021-019 BH-14.0-14.5 7114/94	021-020 BH-1.5-2.0   021-020 BH-6.0-6.5 7/13/94   7/13/94	021-020 BH-6.0-6.5 7/13/94
SVOCs (ug/kg) Matrix	Soil	Soil	Soll	Soll S	Soil	Soil
Acenaphthene	330U	330U	330U	330U	330U	3300
Acenaphthylene	330U	330U	330U	330U	330U	330U
Aniline	330U	330U	330U	330U	330U	330U
Anthracene	330U	330U	330U	330U	330U	330U
Benzo (a) Anthracene	330U	330U	330U	330U	330U	330U
Benzo (b) Fluoranthene	330U	330U	330U	330U	330U	330U
Benzo (k) Fluoranthene	330U	330U	330U	330U	330U	330U
Benzo (a) Pyrene	330U	330U	330U	330U	330U	330U
Benzoic Acid	1,600U	1,600U	1,600U	1,600U	1,600U	1,600U
Benzo(g,h,i)Perylene	330U	330U	330U	330U	330U	330U
Benzył alcohol	330U	33011	330U	330U	330U	330U
4-Bromophenylphenyl ether	330U	330U	330U	330U	330U	3300
Butylbenzylphthalate	330U	330U	330U	330U	330U	330U
di-n-Butyl phthalate	330U	330U	330U	330U	330U	330U
Carbazole	330U	330U	330U	330U	330U	330U
4-Chloroaniline	330U	330U	330U	330U	330U	330U
bis(2-Chloroethoxy)Methane	330U	330U	330U	330U	330U	330U
bis(2-Chloroethyl)Ether	330U	330U	330U	330U	330U	330U
bis(2-Chloroisopropyt)Ether	330U	330U	330U	330U	330U	330U
4-Chloro-3-Methylphenol	3300	330U	330U	3300	33011	330U
2 Chloronaphthalene	3.3011	33011	3300	3300	3300	3300
2-Chlorophenol	330U	3300	330U	330U	330U	330U
4-Chlorophenylphenyl ether	330U	330U	330U	330U	330U	330U
Chrysene	330U	330U	330U	330U	3300	330U
Dibenz(a,h)Anthracene	330U	3300	330U	330U	330U	3300
Dibenzoluran	330U	330U	330U	330U	3300	330U
1,2 -Dichlorobenzene	330U	330U	330U	330U	330U	330U
1,3-Dichlorobenzene	330U	33011	330U	330U	330U	330U
1,4 Dichlorobenzene	330U	330U	330U	330U	1:	3300
3,3'-Dichlorobenzidine	330U	33011	330U	330U	330U	330U
2,4-Dichlorophenol	330U	330U	330U	330U	330U	330U
Diethylphthalate	330U	330U	330U	330U	330U	330U
2,4 Dimethylphenol	33011	330U	33011	3300	330U	33011
Dimethyl Puthalate	330U	330U	330U	330U	330U	330U

Table J.3
Analytical Results of Soil Samples Collected from Site 21
Minnesota Air National Guard Base
Duluth, Minnesota

	021-019 BH-1.0-1.5	021-019 BH-6.0-6.5	021-019 BH-10.0-10.5	.0-14.5	021-020 BH-1.5-2.0	021-0
Sample Date:	7/14/24	940756F10	//14/24 9407566-11	7/114/94 940/7566-12	9407473-09	9407473-10
SVOCs (ug/kg) Matrix	Soil	Soil	Soll	lioS	Soil	Soll
nylphenol	800U	800U	800U	800U	800U	800U
2,4-Dinitrophenol	S(X)U	800U	300U	8(x)(1)	N(X)U	0008
2,4-Dinitrotoluene	330U	330U	330U	330U	330U	330U
2,6-Dinitrotoluene	330U	330U	330U	330U	330U	330U
1,2-Diphenylhydrazine	330U	330U	330U	330U	330U	330U
bis (2-Ethylhexyl) Phthalate	330U	330U	330U	3300	330U	330U
Fluoranthene	330U	330U	330U	330U	330U	330U
Fluorene	330U	330U	330U	330U	330U	330U
Hexachlorobenzene	330U	330U	330U	330U	330U	330U
Hexachlorobutadiene	330U	330U	330U	330U	330U	330U
Hexachloroethene	330U	330U	330U	330U	330U	330U
Hexachlorocyclopentadiene	330U	330U	330U	330U	330U	330U
Indeno (1,2,3-cd) Pyrene	330U	330U	330U	330U	330U	330U
Isophorone	330U	330U	330U	330U	330U	330U
2-Methylnaphthalene	330U	330U	330U	330U	330U	3300
2-Methylphenol	330U	3300	330U	330U	330U	330U
4-Methylphenol	330U	330U	330U	330U	330U	330U
Naphthalene	3300	3300	33011	330U	330U	33011
2 Nitroaniline	SCOUL	8(X)(1)	8000	8(K)[]	8(X)()	SON
3-Nitroaniline	NO08	D(X)8	0008	8(X)U	8(X)U	D008
4-Nitroaniline	0008	NOX)8	8000	8(X)U	800U	0008
Nitrobenzene	330U	330U	330U	330U	330U	330U
2-Nitrophenol	330U	330U	330U	3300	33001	3300
1 Nitrophenol	(1008	8(X)11	8001	8(x)()	8(x)[1]	8(x)(1
N-Nitrosodiphenylamine (1)	330U	3300	330U	3300	330U	330U
N-Nitroso-Di-n-Propylamine	330U	330U	3300	3300	330U	330U
Di-n-Octyl Phthalate	330U	330U	330U	330U	330U	3300
Pentachlorophenol	0008	8(X)[]	N(X)U	8(x)()	8(X)()	8(x)11
Phenanthrene	3300	330U	330U	330U	330U	330U
Phenol	330U	330U	330U	3300	330U	330U
Pyrene	330U	3300	330U	330U	330U	330U
Pyridine	330U	330U	330U	330U	330U	330U
1,2,4-Trichlorobenzene	3300	3300	330U	330U	330U	330U
2,4,5-Trichlorophenol	0008	1008	0008	0008	MO08	1008
2,4,6-Trichlorophenol	330U	330U	330U	330U	330U	3300

Analytical Results of Soil Samples Collected from Site 21 Minnesota Air National Guard Base Duluth, Minnesota Table J.3

Location No.:	021-019 BH-1.0-1.5	021-019 BH-6.0-6.5	021-019 BH-10.0-10.5   021-019 BH-14.0-14.5	021-019 BH-14.0-14.5	021-020 BH-1.5-2.0	021-020 BH-6.0-6.5
Sample Date: Lab Sample No.:		7/14/94 9407566-10	7/14/94 9407566-11	7/14/94 9407567-12	7/13/94 9407473-09	7/13/94
was a company of the	Soil See	Soil	Soil	Soil	Soil	Soil
TPH (mg/kg)	25	30	20	22	13	50
Pesticides/PCBs (ug/kg)						
a-BHC	0.67U	0.67U	0.67U	0.67U	0.67U	0.67U
h-BHC	1.70	1.7U	1.7U	1.70	1.7U	1.7U
d-BHC	1.7U	1.70	1.7U	1.70	1.70	1.7U
g-BHC	1.00	1.0U	1.0U	1.0U	1.00	1.0U
Heptachlor	1.00	1.00	1.0U	1.00	1.00	1.0U
Aldrin	0.67U	0.67U	0.67U	0.67U	0.67U	U.67U
Heptachlor Epoxide	1.7U	1.70	1.7U	1.7U	1.70	1.70
Endosulfan I	1.70	1.70	1.7U	1.70	1.70	1.70
Dieldrin	0.33U	0.33U	0.33U	0.33U	0.33U	0.33U
Endrin	1.30	1.3U	1.3U	1.30	1.30	1.311
Endosulfan II	1.00	1.00	1.0U	1.0U	1.00	1.0U
4,4'-DDT	2.3U	2.3U	2.3U	2.3U	2.3U	2.3U
Endrin Aldehyde	3.3U	3.3U	3.3U	3.3U	3.3U	3.3U
Methoxychlor	1.70	1.70	1.7U	1.70	1.70	1.7U
a-Chlordane	0.33U	0.33U	0.33U	0.33U	0.33U	0.33U
g-Chlordane	1.70	1.70	1.7U	1.70	1.70	1.70
4,4'-DDE	0.67U	0.67U	0.67U	0.67U	0.67U	0.67U
4,4'-DDD	3.3U	3.3U	3.3U	3.3U	3.3U	3.3U
Endosulfan Sulfate	3.3U	3.3U	3.3U	3.3U	3.30	3.3U
Endrin Ketone	3.3U	3.3U	3.3U	3.3U	3.3U	3.3U
Foxaphene	33U	33U	33U	33U	33U	330

Table J.3
Analytical Results of Soil Samples Collected from Site 21
Minnesota Air National Guard Base
Duluth, Minnesota

	7/14/94	7/14/04	7/14/94	7/14/04 7/14/04 7/14/04 7/14/04 7/14/04 7/14/04	0.21-0.0 DI-1-2-1.20	20-0-0-1101 0-7-7-70
Lab Sample No.:	9407566-09	9407566-10	9407566-11	9407567-12	9407473-09	9407473-10
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Pesticides/PCBs (ug/kg)						
Chlordane (technical)	1.70	1.70	1.70	1.70	1.70	1.70
PCB-1016	170	U7.1	170	U71	U71	170
PCB-1221	170	17U	170	17.0	170	U71
PCB-1232	170	170	17.0	U71	17U	170
PCB-1242	170	17U	170	170	U71	170
PCB-1248	170	U71	170	17.0	U71	170
PCB-1260	17.0	170	170	17U	171	U71
Metals (malka)				•		
Slove	311	311	311	311	116	311
Aliminim	001.01	12,600	6 430	7 390	10.000	2 450
Arconic		20011	0000	111	111	2001
Darulium	110	110	110	110	716	2 10
Calmin	118.0	0.7	0.2	0.5	07	07.0
Cadming	20.0	00:0	31.	00:0	80.5	0.2.0
Cinolinain	777	+7	CI	11	) .	0.7
Copper	53.9	56.5	43.1	54.3	34.5	15.6
Mercury	0.10	0.10	0.10	0.10	0.10	0.10
Nickel	21	25	18	18	17	9
Lead	3.1	4.0	2.3	2.7	2.3	3.6
Antimony	110	10	10	10	UI	10
Selenium	0.8U	0.80	0.8U	0.8U	0.8U	0.8U
Thallium	0.4U	0.4U	0.4U	0.40	0.40	0.4U
Zinc	44	84	19	49	30	23

ug/kg - micrograms per kilogram mg/kg - milligrams per kilogram

U - Indicates compound analyzed for but not detected BH - Borehole DUP - Duplicate

Table J.3
Analytical Results of Soil Samples Collected from Site 21
Minnesota Air National Guard Base
Duluth, Minnesota

Kample Date:         7/13/94           VOCs (ug/kg)         Matrix         Soil           WOCs (ug/kg)         Matrix         Soil           Acetone         13         Benzene         5U           Bromodichloromethane         5U         Bromodichloromethane         5U           2-Butanone         20U         20U           Carbon Disulfide         5U         Carbon Carbon Tetrachloride         5U           Carbon Tetrachloride         5U         Chloroethane         5U           Chloroethane         5U         5U           Chloroethane         5U         5U           Chloroethane         5U         5U           1,1-Dichloroethane         5U           1,2-Dichloroethane         5U           1,1-Dichloroethane         5U           1,1-Dichloroethane         5U           1,2-Dichloroethane         5U		7/13/94 9407473-03 Soil	7/13/94 940/473-04	7/13/94 9407473-05	7/12/94	7/12/94
atrix		Soll	#10/#/D#4			
		5			T0-C0#/ 0#/C	70-C0b/0bx
		1011	1011	1011	1100	NO.
		511	115	47	001	001
		su	SU	5U	96 90	1150
		5U	5U	SU	5U	ns 20
		100	100	100	10U	101
		20U	20U	20U	20U	20U
		SU	SU	SU	SU	SU
		SU.	SU	SU	SU	ns
		SU	SU	SU	50	50
		D01	100	100	101	100
		100	100	100	100	10U
		SU SU	5U	SU	SU	SU
		100	100	100	100	100
No.		SU	SU	SU	50	SU
		50	50	SU	51)	511
		SU	50	SU	50	SU
	****	SU	SU	SU	SU	5
		SU	50.	5U	SU	5U
		511	50.	511	513	211
		50	SU	SU	SU	su
nloropropene		50	50	SU	SU	50
· v		5U	SU	8	513	130
		101	100	1001	101	1001
		50	50	SU	50	50
l-2-Pentanone		10U	100	10U	100	100
		SU	SU	SU	50	SU
oethane		50	511	511	50	SU
atoethene		50	51)	511	SU	511
		SU	SU SU	19	50	5(X)
		SU SU	5U	SU	SU	50
sthane	···- <u>-</u>	SU	5U	SU	50	5U
		511	50	51)	511	5.0
omethane		5U	SU	SU	SU	SU
		100	10U	100	100	10U
		100	10U	100	10U	100
[Xylenes (total)		517	115	34	511	740

U - Indicates compound analyzed for but not detected. VOCs - Volatile organic compounds. DIP - Duplicate.

Table J.3
Analytical Results of Soil Samples Collected from Site 21
Minnesota Air National Guard Base
Duluth, Minnesota

Location No.:	021-020 BH-14.0-14.5	021-021 BH-1.5-2.0	021-020 BH-14,0-14,5   021-021 BH-1,5-2,0   021-021 BH-11,0-11,5   021-021 BH-14,0-14,5   021-022 BH-1,5-2,0   021-022 BH-11,0-11,5	021-021 BH-14.0-14.5	021-022 BH-1.5-2.0	021-022 BH-11.0-11.5
	7/13/94	7/13/94	7/13/94	7/13/94	7/12/94	7/12/94
Lab Sam	9407473-11	9407473-03	9407473-04	9407473-05	9407405-01	9407405-02
SVOCs (ug/kg) Matrix	Soll	Soil	Soil	Soll	Soil	Soil
Acenaphthene	330U	330U	330U	330U	330U	330U
Acenaphthylene	330U	330U	330U	330U	330U	330U
Aniline	330U	330U	330U	330U	330U	330U
Anthracene	330U	330U	330U	330U	330U	330U
Benzo (a) Anthracene	330U	3300	330U	330U	3300	330U
Benzo (b) Fluoramhene	330U	330U	330U	330U	3300	330U
Benzo (k) Fluoranthene	330U	330U	330U	330U	330U	330U
Benzo (a) Pyrene	330U	330U	330U	330U	330U	330U
Benzoic Acid	1,6000	1,6000	1,6(x)U	1,600U	1,600U	1,600
Benzo(g,h,i)Perylene	330U	330U	330U	330U	3300	330U
Benzyl alcohol	330U	330U	330U	330U	330U	330U
4-Bromophenylphenyl ether	330U	330U	330U	330U	330U	330U
Butylbenzylphthalate	330U	330U	330U	330U	330U	330U
di-n-Butyl pluhalate	330U	330U	330U	330U	330U	330U
Carbazole	330U	330U	330U	330U	330U	330U
4-Chloroaniline	330U	330U	3300	330U	330U	330U
bis(2-Chloroethoxy)Methane	330U	330U	330U	330U	330U	330U
bis(2-Chloroethyl)Ether	330U	330U	330U	330U	3300	330U
bis(2-Chloroisopropyl)Ether	330U	330U	330U	330U	330U	330U
4-Chloro-3-Methylphenol	330U	330U	330U	330U	330U	330U
2-Chloronaphthalene	330U	330U	330U	330U	330U	330U
2-Chlorophenol	330U	330U	330U	330U	330U	330U
4-Chlorophenylphenyl ether	330U	330U	330U	330U	3300	330U
Chrysene	330U	330U	330U	330U	330U	330U
Dibenz(a,h)Anthracene	330U	330U	330U	330U	330U	330U
Dibenzofuran	330U	330U	3300	330U	3300	330U
1,2 -Dichlorobenzene	330U	330U	330U	330U	330U	330U
1,3-Dichlorobenzene	330U	330U	330U	330U	330U	330U
1,4-Dichlorobenzene	330U	330U	330U	330U	330U	330U
3,3'-Dichlorobenzidine	330U	330U	330U	330U	330U	3300
2,4-Dichlorophenol	330U	3300	330U	330U	330U	330U
Diethylphthalate	330U	330U	330U	330U	330U	330U
2,4-Dimethylphenol	330U	330U	330U	330U	330U	330U
Dimethyl Phthalate	330U	330U	330U	330U	330U	330U

Table J.3
Analytical Results of Soil Samples Collected from Site 21
Minnesota Air National Guard Base
Duluth, Minnesota

Location	n No.: 02	11-020 BH-14.0-14.5	021-021 BH-1.5-2.0	Location No.: 021-020 BH-14.0-14.5   021-021 BH-1.5-2.0   021-021 BH-11.0-11.5   021-021 BH-14.0-14.5   021-022 BH-1.5-2.0   021-022 BH-11.6-11.5	021-021 BH-14.0-14.5	021-022 BH-1.5-2.0	021-022 BH-11.0-11.5
Sample Date: Lab Samole No.	Date:	9407473-11	7/13/94 9407473-03	7/13/94 9407473-04	7/L3/94 9407473-05	7/12/94 9407405-01	9407405-02
SVOCs (ug/kg)	Matrix	Soil	Soil	Soil	Soil	Soil	Soil
4,6-Dinitro 2-Methylphenol		8000	800U	N008	M008	0008	0008
2,4-Dmitrophenol		MO08	M008	0008	8000	800U	M008
2,4-Dinitrotoluene		330U	330U	3301)	33011	330U	3300
2,6-Dinitrotoluene		330U	330U	330U	330U	330U	330U
1,2-Diphenylhydrazine		3300	330U	330U	330U	330U	330U
bis (2-Ethylhexyl) Phthalate		330U	330U	330U	330U	330U	330U
Fluoranthene		330U	330U	3300	3300	330U	330U
Ипогепе		330U	330U	330U	330U	330U	330U
Hexachlorobenzene	_	330U	330U	330U	330U	330U	330U
Hexachlorobutadiene		330U	3301	330U	330U	330U	330U
Hexachloroethane		330U	330U	3300	330U	330U	330U
Hexachlorocyclopentadiene		330U	330U	330U	330U	3300	330U
Indeno (1,2,3-cd) Pyrene		330U	330U	330U	330U	330U	330U
Isophorone		330U	330U	330U	330U	3300	330U
2-Methylnaphthalene		330U	330U	330U	330U	330U	330U
2-Methylphenol		330U	33011	330U	330U	330U	330U
4-Methylphenol		330U	33011	330U	3301	3301	3300
Naphthalene	-	330U	330U	330U	330U	330U	330U
2-Nitroaniline		800U	8000	MOON 8	800U	0008	8000
3-Nitroaniline		8001	8001	(1(X)8	8(X)I1	80001	8(X)(1)
4 Nitroaniline		11008	8001	8(8)(1)	8(x)11	80011	8000
Nitrobenzene		330U	3300	330U	330U	330U	330U
2-Nitrophenol		330U	330U	3300	330U	330U	330U
4-Nitrophenol		800U	800U	0008	800U	0008	0008
N-Nitrosodiphenylamine (1)		330U	33013	330U	3300	330U	330U
N Nitroso Dt n-Propylamine		330U	33011	3300	330U	3300	330U
Di-n-Octyl Phthalate		330U	330U	330U	330U	330U	330U
Pentachlorophenol		MO00	8000	NO018	M008	8000	0008
Phenanthrene		330U	330U	330U	330U	330U	330U
Phenol		330U	3300	3300	330U	330U	330U
Pyrene		330U	330U	330U	330U	330U	3300
Pyridine		330U	330U	330U	330U	330U	3300
1,2,4-Trichlorobenzene	_	330U	330U	330U	330U	330U	330U
2,4,5-Trichlorophenol		800U	8(X)(1)	M008	0008	800U	DO)8
2,4,6-Trichlorophenol		330U	3300	3300	330U	330U	330U

Table J.3
Analytical Results of Soil Samples Collected from Site 21
Minnesota Air National Guard Base
Duluth, Minnesota

Location No.:	0-14.5	5-2.0	021-021 BH-11.0-11.5	021-021 BH-11.0-11.5   021-021 BH-14.0-14.5	021-022 BH-1.5-2.0	021-022 BH-11.0-11.5
Sample Date:	7/13/94	9/13/94	7/13/94	7/13/94	7/12/94	7/12/94
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
TPH (mg/kg)	21	140	21	100	250	13
Pesticides/PCBs (ug/kg)						
a-BIIC	0.67U	0.67U	0.67U	0.67U	U.67U	0.67U
b-BHC	U.7U	1.7U	1.70	1.7U	1.70	1.7U
d-BHC	07.1	1.7U	1.7U	U.7.U	1.7U	1.70
g-BHC	1.0U	1.0U	1.0U	1.00	1.0U	1.0U
Heptachlor	1.0U	1.0U	1.0U	1.00	1.00	1.0U
Aldrin	U.67U	0.67U	U.67U	0.67U	U.67U	1.3
Heptachlor Epoxide	1.70	1.7U	1.70	1.70	1.7U	1.7U
Endosulfan I	1.70	1.7U	1.70	1.70	1.7U	1.70
Dieldrin	0.33U	0.33U	0.33U	0.33U	0.33U	0.33U
Endrin	1.3U	U.3U	U£.1	1.3U	1.30	1.3U
Endosulfan II	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U
4,4'-DDT	2.3U	2.3U	2.3U	2.3U	2.3U	2.3U
Endrin Aldehyde	3.3U	3.3U	3.3U	3.3U	3.3U	3.3U
Methoxychlor	1.71	1.70	1.70	1.70	U.7U	1.7U
a-Chlordane	0.33U	0.33U	0.33U	0.33U	0.33U	0.33U
g-Chlordane	1.70	1.7U	U.7.1	0.71	1.70	1.70
4,4'-DDE	0.67U	0.67U	0.67U	0.67U	U.67U	0.67U
1,4'-DDD	3.3U	3.3U	3.3U	3.30	3.3U	3.30
Endosultan Sulfate	3.3U	3.3U	3.3U	3.3U	3.3U	3.3U
Endrin Ketone	3.3U	3.3U	3.3U	3.3U	3.3U	3.3U
Foxaphene	33U	33U	33U	33U	330	330

TPH - Total petroleum hydrocarbons PCBs - Polychloronated biphenyls

Analytical Results of Soil Samples Collected from Site 21 Minnesota Air National Guard Base Duluth, Minnesota

Location No.:	Location No.:   021-020 BH-14.0-14.5	021-021 BH-1.5-2.0	021-021 BH-11.0-11.5	1-14.5   021-021 BH-1.5-2.0   021-021 BH-11.0-11.5   021-021 BH-14.0-14.5   021-022 BH-1.5-2.0	021-022 BH-1.5-2.0	021-022 BH-11.0-11.5
Sample Date: Lab Sample No.:	7/13/94	7/13/94	7/13/94 9407473-04	7/13/94 9407473-05	7/12/94 9407405-01	7/12/94 940740S-02
The second of th		Soil	Soil	Soil	Poll	Soil
Pesticides/PCBs (ug/kg)						
Chlordane (technical)	1.70	1.7U	1.70	1.70	1.7U	U.7U
PCB-1016	170	170	170	170	U71	17.0
PCB-1221	U7.1	170	170	170	17.0	170
PCB-1232	170	170	U71	U7U	U71	17.0
PCB-1242	U71	170	170	U71	17.0	17U
PCB-1248	U71	170	170	U71	170	17.0
PCB-1260	U71	170	U71	170	U7.I	170
Metals (mg/kg)						
Silver	30	30	30	3U	0.6U	0.6U
Aluminum	8,250	9,300	11,000	10,700	10,100	12,700
Arsenic	1.0			1		2
Beryllium	20	2U	2U	2U	6.0	8.0
Cadmium	0.07	0.09	90.0	0.09	0.8U	8.0
Chromium	9	10	12	11	18	23
Copper	58.2	48.8	64.4	92.6	45	46
Mercury	0.1U	0.1U	0.1U	0.1U	0.1U	0.10
Nickel	18	61	20	20	23	24
Lead	2.8	3.0	2.8	2.5	5.0	4.2
Antimony	10	10	ΩI	10	10	10
Selenium	0.8U	0.8U	0.8U	0.8U	0.8U	0.80
Thallium	0.4U	0.4U	0.40	0.40	0.4U	0.4U
Zinc	40	41	71	68	38	42

ug/kg - micrograms per kilogram mg/kg - miligrams per kilogram

Analytical Results of Soil Samples Collected from Site 21
Minnesota Air National Guard Base
Duluth, Minnesota Table J.3

Location No.:	Location No.: 021-022 BH-14.0-14.5	021-023 BH-1.5-2.0	021-023 BH-11,0-11,5	021-023 BH-11.0-11.5 DUP	021-023 BH-14.0-14.5	021-024 BH-1.5-2.0
Sample Date:	7/12/94	7/12/94	7/12/94	7/12/94	7/12/94	7/13/94
Lab Sa	9407405-03	9407405-04	9407405-05	9407405-06	9407405-07	9407473-06
VOCs (ug/kg) Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Acetone	10U	100	38	100	D01	100
Benzene	79	SU	170	630	1100	SU
Bromodichloromethane	SU	SU	SU SU	SU	50	5U
Bromoform	SU	SU	50	ns	SU	51)
Bromomethane	100	100	100	10U	100	100
2-Butanone	200	20U	20U	20U	20U	20U
Carbon Disulfide	5U	SU	SU	SU	SU	SU
Carbon Tetrachloride	50	5U	50	5U	2C	SU
Chlorobenzene	SU	50	20.	SU	50	SU
Chloroethane	100	100	10U	10U	100	100
2-Chloroethylvinylether	10U	10U	10U	100	100	100
Chloroform	SU	SU	SU	SU	l su	SU
Chloromethane	10U	10U	100	10U	100	100
Dibromochloromethane	51)	SU	SU	50	5U	SU
1,1-Dichloroethane	5U	SU	SU.	SU	SU	SU
1,1-Dichloroethene	50	SU	50	50	su	SU
1,2-Dichloroethane	50	50	33	39	52	SU
total -1,2-Dichloroethene	5U	SU	5U	50	510	50
1,2-Dichloropropane	5U	50	50	50	50	50
cis-1,3-Dichloropropene	50	20	50	50	SU	SU
trans-1,3-Dichloropropene	5U	SU	SU	SU	SU S	SU
Ethylbenzene	51)	50	6	SU	011	SU
2-Hexanone	100	100	101	101	100	100
Methylene Chloride	2n	SU	5U	50	5U	SU
4-Methyl-2-Pentanone	10U	100	100	100	100	10U
Styrene	50	50	5U	SU	SU	511
1,1,2,2.Tetrachloroethane	50	51)	20	20	l su	50
Tetrachloroethene	50	SU	2C	50	50	SU
Toluene	9	50	33	SU	350	ns su
1,1,1,1-Trichloroethane	115	511	50	50	511	51)
1,1,2 Trichloroethane	SU	SU	50	50	203	SU
Trichloroethene	SU	50	5U	SU	50	50
Trichlorofluoromethane	SU	5U	50	5U	SU	5U
Vinyl Acetate	10U	100	10U	10U	100	100
Vinyl Chloride	101	10U	D01	101	001	101
[Xylenes (total)	18	5U	33	5.0	370	511

### Analytical Results of Soil Samples Collected from Site 21 Minnesota Air National Guard Base Duluth, Minnesota Table J.3

Location No.:	021-022 BH-14.0-14.5	021-023 BH-1.5-2.0	021-023 BH-11.0-11.5	Location No.:   021-022 BH-14,0-14.5   021-023 BH-1.5-2.0   021-023 BH-11.0-11.5   021-023 BH-11.0-11.5 DUP   021-023 BH-14,0-14.5   021-024 BH-1.5-2.0	021-023 BH-14.0-14.5	021-024 BH-1.5-2.0
Sample Date:	7/12/94	7/12/94	7/12/94	7/12/94	7/12/94	7/13/94
SVOCs (ug/kg) Matrix	Soil	Soil	loS	No. Control of the co	Soil	Soil
	330U	330U	330U	330U	330U	330U
Acenaphthylene	330U	330U	3300	330U	3300	33011
Aniline	330U	330U	330U	330U	3300	330U
Anthracene	3300	330U	330U	330U	330U	330U
Benzo (a) Anthracene	330U	069	330U	3300	330U	330U
Benzo (b) Eluoranthene	330U	330U	330U	330U	3300	3300
Benzo (k) Fluorambene	3300	1,2(X)	330U	3300	330U	330U
Benzo (a) Pyrene	330U	092	330U	330U	3300	330U
Benzoic Acid	1,600U	1,600U	1,600U	1,600U	1,600U	1,600U
Benzo(g,h,n)verylene	330U	610	3300	3300	330U	330U
Benzyl alcohol	330U	33011	330U	3300	330U	330U
4-Bromophenylphenyl ether	330U	330U	330U	3300	330U	3300
Butylbenzylphthalate	330U	330U	330U	3300	330U	3300
di-n-Butyl phthalate	330U	330U	3300	330U	330U	330U
Carbazole	330U	330U	330U	330U	330U	330U
4-Chloroaniline	330U	330U	330U	3300	330U	330U
bis(2-Chloroethoxy)Methane	330U	330U	330U	330U	330U	330U
bis(2-Chloroethyl)Ether	330U	330U	330U	330U	330U	330U
bis(2-Chloroisopropyl)Ether	330U	330U	330U	330U	3300	3300
4-Chioro-3-Methylphenol	330U	330U	330U	3300	330U	3300
2-Chloronaphthalene	330U	330U	330U	330U	330U	330U
2-Chtorophenol	330U	330U	330U	330U	330U	330U
4-Chlorophenylphenyl ether	330U	330U	330U	330U	330U	330U
Chrysene	3300	8(3)	330U	330U	330U	3300
Dibenz(a,h)Anthracene	330U	330U	330U	330U	330U	330U
Dibenzofuran	330U	330U	330U	330U	330U	330U
11,2 -Dichlorobenzene	330U	3300	] 330U	330U	330U	330U
1,3-Dichlorobenzene	330U	330U	330U	3300	3300	330U
1,4-Dichlorobenzene	330U	33011	33001	3300	3300	3300
3,3'-Dichlorobenzidinc	330U	330U	3300	330U	330U	3300
2,4-Dichlorophenol	330U	330U	330U	330U	330U	330U
Diethylphthalate	330U	330U	330U	3300	3300	3300
2,4-Dimethylphenol	330U	330U	330U	330U	330U	3300
Dimethyl Phthalate	330U	330U	330U	330U	3300	330U

Table J.3
Analytical Results of Soil Samples Collected from Site 21
Minnesota Air National Guard Base
Puluth, Minnesota

Location No.:	021-022 BH-14.0-14.5	021-023 BH-1.5-2.0	021-023 BH-1.5-2.0   021-023 BH-11.0-11.5	021-023 BH-11.0-11.5 DUP 021-023 BH-14.0-14.5	021-023 BH-14.0-14.5	021-024 BH-1.5-2.0
Sample Date:	7/12/94	7/12/94	7/12/94	7/12/94	7/12/94	7/13/94
Lab Sam	9407405-03	9407405-04	9407405-05	8407405-06	9407405-07	9407473-06
SVOCs (ug/kg) Matrix	Soll	Soil	Soff	Soll	Soil	Soi!
4,6-Dinitro-2-Methylphenol	0008	0001	0008	800U	M008	0008
2,4-Dinitrophenol	8000	0008	0008	800U	0008	D008
2,4-Dinitrotoluene	330U	330U	330U	330U	330U	330U
2,6-Dinitrotoluene	330U	330U	330U	330U	330U	330U
1,2-Diphenylhydrazine	330U	330U	330U	330U	330U	330U
bis (2-Ethylhexyl) Phthalate	330U	3300	330U	330U	330U	330U
Fluoranthene	330U	1,500	330U	330U	330U	3300
Fluorene	330U	330U	330U	330U	330U	330U
Hexachlorobenzene	330U	330U	330U	330U	330U	330U
Hexachlorobutadiene	330U	33011	330U	330U	330U	330U
Hexachloroethane	330U	330U	330U	330U	330U	330U
Hexachlorocyclopentadiene	330U	330U	330U	330U	330U	330U
Indeno (1,2,3-cd) Pyrene	330U	530	330U	330U	330U	330U
Isophorone	330U	330U	330U	330U	330U	3300
2-Methylnaphthalene	330U	330U	330U	330U	330U	330U
[2-Methylphenol	330U	330U	330U	330U	330U	330U
4-Methylphenol	330U	330U	330U	330U	330U	330U
Naphthalene	330U	330U	330U	330U	330U	330U
2-Nitroaniline	M008	0008	0008	8000	0008	8000
3-Nitroaniline	M008	0008	800U	800U	M008	MO08
4-Nitroaniline	M008	0008	0008	800U	8000	800U
Nitrobenzene	330U	330U	330U	330U	330U	330U
2-Nitrophenol	330U	330U	330U	330U	330U	330U
4-Nitrophenol	1008	D008	0008	800U	0008	MO08
N-Nitrosodiphenylamine (1)	330U	330U	330U	330U	330U	330U
N-Nitroso-Di-n-Propylamine	330U	330U	330U	330U	330U	330U
Di-n-Octyl Phthalate	330U	330U	330U	330U	330U	330U
Pentachlorophenol	M008	0008	0008	Л008	0008	0008
Phenanthrene	330U	066	330U	330U	330U	330U
Phenol	3300	33011	330U	330U	330U	330U
Pyrene	330U	1,500	330U	330U	3300	330U
Pyridine	330U	330U	3300	330U	330U	330U
1,2,4-Trichlorobenzene	330U	330U	330U	330U	330U	330U
2,4,5-Trichlorophenol	MOOU	D(X)8	00008	8001	11008	8(X)U
2,4,6-Trichlorophenol	330U	330U	330U	330U	330U	330U

U. Indicates compound analyzed for but not detected, SVOCs. - Sentivolarite organic compounds DUP - Duplicate

Analytical Results of Soil Samples Collected from Site 21 Minnesota Air National Guard Base Duluth, Minnesota Table J.3

Location No.: Sample Date:	Location No.: 021-022 BH-14.0-14.5 Sample Date: 7/12/94	021-023 BH-1.5-2.0 7/12/94	021-023 BH-11.0-11.5 7/12/94	021-023 BH-1.5-2.0   021-023 BH-11.0-11.5   021-023 BH-11.0-11.5 DUP   021-023 BH-14.0-14.5   7/12/94   7/12/94	021-023 BH-14.0-14.5 7/12/94	021-024 BH-1.5-2.0 7/13/94
Lab Sample No.:	3	9407405-04	9407405-05	9407405-06	9407405-07	9407473-06
Matrix	Soil	Soil.	Soil	Soil	Soil	Soil
TPH (mg/kg)	10U	190	10U	12	18	14
Pesticides/PCBs (ug/kg)						
a-BHC	0.67U	3.35U	0.67U	0.67U	0.67U	0.67U
b-BHC	1.7U	8.5U	1.7U	1.7U	1.70	1.7U
d-BHC	1.70	8.5U	1.7U	1.7U	1.7U	U.7U
g-BHC	1.0U	5.0U	1.0U	1.0U	1.00	1.00
Heptachlor	1.0U	5.0U	1.0U	1.0U	1.0U	1.0U
Aldrin	0.67U	3.35U	0.67U	0.67U	U.67U	0.67U
Heptachlor Epoxide	1.7U	8.5U	1.7U	1.70	1.70	1.70
Endosulfan I	1.7U	8.5U	1.7U	1.7U	1.70	1.70
Dieldrin	0.33U	1.65U	0.33U	0.33U	0.33U	0.33U
Endrin	1.30	0.5U	1.30	1.3U	1.30	1.30
Endosulfan II	1.0U	5.0U	1.0U	1.0U	1.00	1.00
4,4'-DDT	2.3U	11.5U	2.3U	2.3U	2.3U	2.3U
Endrin Aldehyde	3.30	16.5U	3.3U	3.3U	3.3U	3.3U
Methoxychlor	1.7U	8.5U	1.7U	1.70	1.7U	1.7U
a-Chlordane	0.33U	1.65U	0.33U	0.33U	0.33U	0.33U
g-Chlordane	U.7U	8.5U	1.7U	1.70	1.70	1.7U
4,4'-DDE	0.67U	3.35U	0.67U	0.67U	0.67U	0.67U
4,4'-DDD	3.3U	16.5U	3.3U	3.3U	3.3U	3.3U
Endosulfan Sulfate	3.3U	16.5U	3.3U	3.30	3.3U	3.30
Endrin Ketone	3.3U	16.5U	3.30	3.3U	3.3U	3.3U
Toxaphene	330	165U	33U	33U	33U	33U

ug/kg - micrograms per kilogram mg/kg - milligrams per kilogram

U - Indicates compound analyzed for but not detected. BH - Borehole DUP - Duplicate

Analytical Results of Soil Samples Collected from Site 21 Minnesota Air National Guard Base Duluth, Minnesota Table J.3

Location No.:	Location No.: 021-022 BH-14.0-14.5	021-023 BH-1.5-2.0	021-023 BH-11.0-11.5	021-023 BH-11.0-11.5   021-023 BH-11.0-11.5 DUP   021-023 BH-14.0-14.5	021-023 BH-14.0-14.5	021-024 BH-1.5-2.0
Sample Date: Lab Sample No.:	7/12/94 9407405-03	7/12/94 9407405-04	7/12/94 9407405-05	7/12/94	7/12/94	7/13/94
Matrix		Soil	Soil	Soil	Soil	Soil
Pesticides/PCBs (ug/kg)						
(Thordane (technical)	1.711	47	1.70	1.70	1.70	1.70
PCB-1016	17.0	85U	170	U71	U71	U71
PCB-1221	17.0	85U	170	U71	17.0	U71
PCB-1232	U7.1	85U	17.0	17U	U71	U7.1
PCB 1242	17.0	85U	UZI	170	170	17.0
PCB-1248	071	85U	U7.1	17U	U71	U71
PCB-1260	17.0	85U	U7.1	17.0	17.0	U7.1
Metals (mg/kg)						
Silver	0.60	0.6U	0.6U	0.6U	U9:0	30
Aluminum	10,300	11,100	17,800	9,560	8,870	11,400
Arsenic	2	50	50	n.	-	2
Beryllium	8.0	6.0	1.0	8.0	0.7	2U
Cadmium	0.80	0.81	0.80	0.80	0.811	0.07
( hromium	61	21	29	18	×-	17
Copper	42	47	4	46	24	36.4
Mercury	0.1U	0.1U	0.1U	0.10	0.10	0.10
Nickel	25	26	30	22	17	17
Lead	2.8	20	3.9	2.3	4.7	5.3
Antimony	111	13.	10	21	110	2
Selenium	0.8U	0.80	0.8U	0.80	0.8U	0.8U
Thallium	0.4U	0.4U	0.4U	0.4U	0.40	0.4U
Zinc	34	41	43	40	32	+5

ug/kg - micrograms per kilogram mg/kg - milligrams per kilogram

Matrix Soil Soil Soil Soil Soil Soil Soil Soil	Soli 1000 1000 1000 1000 1000 1000 1000 10	Soil 100 100 200 200 200 200 200 200 200 200	Soil 100  50  50  50  50  50  60  60  60  60  60  60  60  60  60  6	501 300 100 100 100 100 100 100 100 100 1
1000 640 640 640 1000 1000 1000 1000 100	1001 330 50 50 100 200 50 50 100 100 100 50 50 50 50 50	100 50 50 100 200 50 50 50 100 50 50 50 50	100 50 50 100 50 50 50 50 60 60 60 60 60 60 60 60 60 60 60 60 60	1001 50 50 100 50 100 100 100 10
here 500  here 500  1000  2000  2000  500  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000	330 5U 5U 10U 20U 5U 5U 5U 10U 10U 10U 5U 5U 5U 5U 5U 7	5 C S C S C S C S C S C S C S C S C S C	50 50 100 50 50 50 50 60 60 50 50 50	\$10 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$2
ane 50 50 100 200 50 50 50 100 100 100 100 100	5U 5U 10U 20U 5U 5U 5U 10U 10U 10U 5U 5U 5U 5U 7 7	50 50 50 50 50 50 50 100 50 50 50 50	5U 5U 10U 5U 5U 5U 10U 10U 5U 5U	50 200 200 50 50 100 100 50 50 50 50 50
su s	5U 10U 20U 5U 5U 5U 10U 10U 10U 5U 5U 5U 5U 5U 5U	50 100 200 50 50 100 100 50 50 50 50	5U 10U 20U 5U 5U 10U 10U 5U 5U 5U	5U 20U 20U 5U 5U 10U 10U 5U 5U 5U 5U
10U 20U 5U 5U 5U 10U 10U 10U 10U 10U 10U 10U 10U 10U 10	100 200 50 50 50 50 100 100 50 50 50 50 50 50 50 50 50	100 200 50 50 50 100 100 50 50 50	100 2010 50 50 50 100 100 50 50 50 50	20U 20U 5U 5U 10U 5U 5U 5U 5U 5U 5U
20U 5U 5U 5U 10U 10U 10U 10U 10U 10U 10U 10U 10U 10	20U 5U 5U 5U 10U 10U 5U 5U 5U 5U 5U 5U 5U 5U 5U 5	200 8 U 8 U 100 100 100 5 U 5 U 5 U	20U 5U 5U 8U 10U 5U 5U 5U 5U 5U	20U 5U 5U 10U 5U 5U 5U 5U 5U 5U
ber SU	5U 5U 5U 10U 10U 5U 5U 5U 5U 5U 5U 5U	ns ns non non non non non non non non no	5U 5U 10U 10U 5U 5U 5U 5U 5U	100 100 100 100 100 100 100 100 100 100
hene 500	5U 5U 10U 10U 5U 5U 5U 5U 5U 5U 5U	20 100 100 100 100 20 20 20 20 20 20 20 20 20 20 20 20 2	5U 8U 10U 10U 5U 5U 5U 5U	1801 1901 1901 1901 101 101 101 101 101
here 5U 1000 and 1000	5U 10U 10U 5U 10U 5U 5U 5U 5U 5U	100 100 100 50 50 50 50 50	5U 10U 5U 10U 5U 5U 5U 5U	1801 1001 100 101 100 100 100 100 100 10
her 1000 ane 50 1000 1000 1000 1000 50 50 50 50 50 50 50 50 60 60 60 60 60 60 60 60 60 60 60 60 60	100U 100U 50U 100U 50U 50U 7 7	100 100 50 100 50 50 50	10U 5U 10U 5U 5U 5U 5U 5U	100 100 100 100 50 80 80
her 100 and 10	1000 5U 100U 5U 5U 5U 7 7	100 80 50 80 80 80	10U 5U 10U 5U 5U 5U 5U	100 100 100 101 100 100 100
su hene su	5U 10U 5U 5U 5U 7 7	001 S US S US	50 100 50 50 50 50	100 100 100 100 100 100 100 100 100 100
10U ane 5U 6U 70Pene 5U 10U 10 10 10 10 10 10 10 10 10 10 10 10 10	100U 5U 5U 5U 7 7	10U SU SU SU	10U SU SU 5U SU	10U SU SU
ane 50 50 50 50 50 50 50 50 50 50 50 50 50 60 60 60 60 60 60 60 60 60 60 60 60 60	5U 5U 5U 7 7	50 50 50	5U SU 5U 118	5U 5U 5U
SU 5U 5U 5U 5U 5U 5U 5U 5U 5U 70 70 70 70 70 70 70 70 70 70 70 70 70	5U 5U 7 5U	5U 5U 5U	5U 5U	su su
5U 5U 5U 5U 5U 5U 5U 5U 6D 6D 7D	5U 7 5U	5U 5U	5U 5H	SU
bene 50 cene 50 opene 50 opene 50 100 te 100 te 100 su 50 su 50 su 50	50	115	115	=
hene 50 cene 51 copene 51 copene 50	50	2	2	SU SU
sene 50 opene 50 21 100 be 100 te 100 stu 50 stu 51 8		50	SU	SU SU
opene 5U 21 21 100 5U	50	5U	50	SU
openie 5U 21 1011 5U	50	SU	SU	SU.
21 1010 5U 5U 5U 5TU 8 8	50	SU	SU.	ns
101) 5U 5U 5U 5U 5U 5U 6U 5U 6U 5U 6U	19	50	SU	50
5U 10U 5U 5U 5U 5U 8 8	1101	101	101	101
10U 5U 5U 5U 5U 8 8	SU	SU	SU	50
Fetrachloroethane 5U oroethene 5U schloroethane 8	101	100	100	100
recthere 50 chloroethane 50 chloroethane 50 chloroethane 50 chloroethane 50	50	5U	SU	50
roethene 5U 8 cichloroethane 5U	20	513	511	511
8 chloroethane 5U	513	51)	5.0	SU
SU	513	51)	SU	50
	5.0	SU	SU	SU
thane character contracted to the contracted to	ns l	50	SU	50
20	21)	50	511	511
Trichlorofluoromethane 5U 5	311	50	su	SU
100	101	100	100	100
100	100	100	100	10U
Xylenes (total) 5t1	115	51)	511	511

Analytical Results of Soil Samples Collected from Site 21
Minnesota Air National Guard Base
Duluth, Minnesota Table J.3

Location No.:	Location No.: 021-024 BH-10.0-10.5	021-024 BH-16.0-16.5	021-025 BH-1.5-2.0	021-025 BH-1.5-2.0   021-025 BH-10.0-10.5	021-025 BH-14.0-14.5
Sample Date:	7/13/94	7/13/94	7/12/94	7/12/94	7/12/94
Lab Sam	9407473-07	9407473-08	9407405-08	9407405-09	9407405-10
SVOCs (ug/kg) Matrix	Soil	Soil	Soil	Soil	Soil
Acenaphthene	330U	330U	330U	330U	330U
Acenaphdhylene	330U	330U	330U	330U	3300
Aniline	3300	330U	330U	330U	330U
Anthracene	330U	330U	3300	330U	330U
Benzo (a) Anthracene	330U	330U	330U	330U	330U
Benzo (b) Fluoranthene	330U	330U	330U	330U	330U
Benzo (k) Fluoranthene	330U	330U	3300	330U	330U
Benzo (a) Pyrene	330U	330U	330U	330U	330U
Benzoic Acid	1,600U	1,600U	1,600U	1,600U	1,600U
Benzo(g,h,i)Perylene	330U	330U	330U	330U	330U
Benzyl alcohol	330U	330U	330U	330U	330U
4-Bromophenylphenyl ether	330U	330U	330U	330U	330U
Butylbenzylpinhalate	330U	330U	330U	330U	330U
di-n-Butyl phthalate	330U	330U	330U	330U	330U
Carbazole	330U	330U	330U	330U	330U
4-Chloroaniline	330U	330U	330U	330U	330U
bis(2-Chloroethoxy)Methane	330U	330U	330U	330U	330U
bis(2-Chloroethyl)Ether	330U	330U	330U	330U	330U
bis(2-Chloroisopropyl)Ether	330U	330U	330U	330U	330U
4-Chloro-3-Methylphenol	330U	330U	330U	330U	330U
2-Chloronaphthalene	330U	330U	330U	330U	330U
2-Chlorophenol	330U	330U	330U	330U	330U
4-Chlorophenylphenyl ether	330U	330U	330U	330U	330U
Chrysene	330U	330U	330U	330U	330U
Dibenz(a,h)Anthracene	330U	3300	3300	330U	330U
Dibenzofuran	330U	330U	330U	330U	330U
1,2 -Dichlorobenzene	330U	330U	330U	330U	330U
1,3-Dichlorobenzene	330U	330U	330U	330U	330U
1,4-Dichlorobenzene	330U	330U	330U	330U	330U
3,3'-Dichlorobenzidine	330U	330U	330U	330U	330U
2,4-Dichlorophenol	330U	3300	330U	330U	330U
Diethylphthalate	330U	330U	330U	3300	330U
2,4-Dimethylphenol	330U	330U	330U	3300	330U
Dimethyl Phthalate	330U	330U	3300	330U	330U

Table J.3

Analytical Results of Soil Samples Collected from Site 21

Minnesota Air National Guard Base

Duluth, Minnesota

cample Date         7/13/94         7/13/94         7/13/94         7/13/94         7/13/94         7/13/94         7/13/94         7/13/94         7/13/94         7/13/94         7/13/94         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         944         <	Location No.:	Location No.:   021-024 BH-10.0-10.5   021-024 BH-16.0-16.5   021-025 BH-1.5-2.0   021-025 BH-10.0-10.5   021-025 BH-14.0-14.5	021-024 BH-16.0-16.5	021-025 BH-1.5-2.0	021-025 BH-10.0-10.5	021-025 BH-14.0-14.5
Sequity         Sout         Sout           stropleg)         Matrix         800U         800U           strople and strophened         800U         800U         800U           strople and strophened         330U         330U         330U           strople and strophene         330U         330U         330U           strople and strophene         330U         330U         330U           strophystratine         330U         330U         330U           strophystratine         330U         330U         330U           strophene         800U         800U         800U <th>Sample Date: Lab Sample No.:</th> <th>7/13/94</th> <th>7/13/94 9407473-08</th> <th>7/12/94 9407405-08</th> <th>7/12/94 9407405-09</th> <th>7/12/94 9407405-10</th>	Sample Date: Lab Sample No.:	7/13/94	7/13/94 9407473-08	7/12/94 9407405-08	7/12/94 9407405-09	7/12/94 9407405-10
titro 2 Methylphenol         800U         800U           nitrolleural         800U         800U           nitrolleural         330U         330U         330U           nitrolleural         330U         330U         330U           nitrolleural         330U         330U         330U           alphacet         330U         330U         330U           alphacet         330U         330U         330U           dorobenzene         330U         330U         330U           lorobenzene         330U         330U         330U           lorobenz		Soil	Soil	Soil	lioS	Soil
six of the plant of throughout of t	4,6-Dinitro-2-Methylphenol	800U	MO08	0008	800U	8(001)
330U         330U         330U           intronlohuene         330U         330U         330U           shrylptazzine         330U         330U         330U <td>2,4-Dinitrophenol</td> <td>8000</td> <td>8000</td> <td>0008</td> <td>8000</td> <td>D008</td>	2,4-Dinitrophenol	8000	8000	0008	8000	D008
sigor         330U         330U           sitrolobene         330U         330U         330U           sitrylhexyl) Phthalate         330U         330U         330U           sitrylhexyl) Phthalate         330U         330U         330U           lorobeatzene         330U         330U         330U           storobeatzene         330U         330U         330U           storobenzene         330U         330U         330U           storobenzene         330U         330U         330U           storobenzene         330U         330U	2,4-Dinitrotoluene	330U	330U	3300	3300	330U
sheetylbydrazine         330U         330U         330U           sheitylbydrazine         330U         330U         330U           andrene         330U         330U         330U           be         330U         330U         330U           dorobenzene         330U         330U         330U           dorobenzene         330U         330U         330U           dorochuadiene         330U         330U         330U           ylabenol         330U         330U         330U           antine         800U         800U         800U           antine         800U         800U         800U           antine         800U         800U         800U           blenol         330U         330U         330U           blenol         800U         800U         800U	2,6-Dinitrotoluene	330U	330U	330U	330U	330U
330U   330U	1,2-Diphenylhydrazine	330U	330U	330U	330U	330U
three         330U         330U           status         800U         800U           status         800U         800U           statis         800U         800U           statis <th< td=""><td>bis (2-Ethylhexyl) Phthalate</td><td>330U</td><td>330U</td><td>330U</td><td>330U</td><td>330U</td></th<>	bis (2-Ethylhexyl) Phthalate	330U	330U	330U	330U	330U
Marchenical Band Band Band Band Band Band Band Band	Fluoranthene	330U	330U	330U	330U	330U
Horobenzene         330U         330U         330U           Iderochtateiene         330U         330U         330U           Iderochtate         330U         330U         330U           Iderochtate         330U         330U         330U           Iderochtate         330U         330U         330U           Jabere         330U         330U         330U           Jabere         330U         330U         330U           Jabere         330U         330U         330U           Jabere         800U         800U         800U           antiline         800U         800U         800U           antiline         800U         800U         800U           phenol         800U         800U         800U           phenol         800U         800U         800U           phenol         330U         330U         330U           phenol         800U         800U         800U         800U           phenol         800U         800U         800U         800U           phenol         330U         330U         330U           phenol         800U         800U         800U      <	Fluorene	330U	330U	330U	330U	330U
Moreothandiene         330U         330U         330U           Morochtandelene         330U         330U         330U           Morochtane         330U         330U         330U           More yelepentaliene         330U         330U         330U           Vine phathalene         330U         330U         330U           Sphenol         330U         330U         330U           Minaphathalene         330U         330U         330U           Minaphathalene         330U         330U         330U           Minaphathalene         800U         800U         800U           Militae         800U         800U         800U           Militae         800U         800U         800U           Militae         800U         800U         800U           Maniline         330U         330U         330U           Maniline         800U         800U         800U         800U           Maccol         800U         800U         800U         800U           Maccol         800U         800U         330U         330U           Maccol         800U         800U         800U         800U           Manilin	Hexachlorobenzene	330U	330U	330U	330U	330U
dorocethane         330U         330U         330U           flouxcyclopentaliene         330U         330U         330U           10.c. J. ed) Pyrene         330U         330U         330U           330U         330U         330U         330U           ylnaphdalene         330U         330U         330U           ylphenol         330U         330U         330U           seene         800U         800U         800U           aniline         800U         800U         800U           asociliphenylamine (1)         330U         330U         330U           asociliphenylamine (1)         330U         330U         330U           asociliphenylamine (1)         330U         330U         330U	Hexachlorobutadiene	330U	330U	330U	330U	330U
Homocyclopentalicue         330U         330U         330U           one         330U         330U         330U           ylnephtralene         330U         330U         330U           ylphenol         330U         330U         330U           ylphenol         330U         330U         330U           ylphenol         330U         330U         330U           alene         330U         800U         800U           aniline         800U         800U         800U           aniline         800U         800U         800U           aniline         800U         800U         800U           phenol         800U         800U         800U           phenol         330U         330U         330U           phenol         800U         800U         800U           sociphenylamine (1)         330U         330U         330U           sociphenylamine (2)         330U         330U         330U           sociphenylamine (3)         330U         330U         330U           socylphenol         800U         800U         800U           cyl phthalate         800U         800U         330U <t< td=""><td>Hexachloroethane</td><td>330U</td><td>330U</td><td>3300</td><td>3300</td><td>330U</td></t<>	Hexachloroethane	330U	330U	3300	3300	330U
(1,2,3 eth) Pyrene         330U         330U         330U           one         330U         330U         330U         330U           ylinephthalene         330U         330U         330U         330U           ylphenol         330U         330U         330U         330U           ylphenol         330U         800U         800U           antine         800U         800U         800U           antiline         800U         800U         800U           antiline         800U         800U         800U           phenol         800U         800U         800U           phenol         330U         330U         330U           phenol         330U         330U         330U           phenol         330U         330U         330U           so-Di-n-Proplamine         330U         330U         330U           so-Di-n-Proplamine         800U         800U         800U           so-Di-n-Proplamine         330U         330U         330U           so-Di-n-Proplamine         330U         330U         330U           so-Di-n-Proplamine         330U         330U         330U           cyl Pithalate	Hexachloroxyclopentadiene	330U	330U	3300	33011	3300
one         330U         330U         330U           ylinaphthalene         330U         330U         330U           ylphenol         330U         330U         330U           ylphenol         330U         330U         330U           alene         800U         800U         800U           antiline         800U         800U         800U           antiline         800U         800U         800U           antiline         800U         800U         800U           antiline         800U         800U         800U           phenol         800U         800U         800U           phenol         800U         800U         800U           phenol         800U         800U         800U           phenol         330U         330U         330U           phenol         800U         800U         800U           phenol         330U         330U         330U           phenol         800U         800U         800U           phenol         330U         330U         330U           phenol         330U         330U         330U           phenol         800U <td< td=""><td>Indeno (1,2,3 cd) Pyrene</td><td>330U</td><td>330U</td><td>330U</td><td>3300</td><td>330U</td></td<>	Indeno (1,2,3 cd) Pyrene	330U	330U	330U	3300	330U
yluaphthalene         330U         330U         330U           ylphenol         330U         330U         330U           ylphenol         330U         330U         330U           alene         800U         800U         800U           amiline         800U         800U         800U           amiline         800U         800U         800U           amiline         800U         800U         800U           phenol         330U         330U         330U           phenol         800U         800U         800U           phenol         800U         800U         800U           socdiphenylamine         330U         330U         330U           socdiphenylamine         330U         330U         330U           socdiphenylamine         330U         330U         330U           socdiphenylamine         330U         330U         330U           drivenol         330U         330U         330U           drivenol         330U         330U         330U           drivenol         330U         330U         330U           drivenol         330U         330U         330U	Isophorone	330U	330U	3300	3300	330U
ylphenol         330U         330U         330U           ylphenol         330U         330U         330U           alene         330U         330U         330U           amiline         800U         800U         800U           aniline         800U         800U         800U           aniline         330U         800U         800U           aniline         330U         800U         800U           phenol         330U         330U         330U           phenol         330U         330U         330U           phenol         330U         330U         330U           soodliphenol         330U         330U         330U           soodli	2-Methylnaphthalene	330U	330U	330U	330U	330U
ylphenol         330U         330U         330U           alene         800U         800U         800U           aniline         800U         800U         800U           aniline         800U         800U         800U           aniline         330U         800U         800U           phenol         330U         330U         330U           phenol         800U         800U         800U           sodiphenol         330U         330U         330U           soboli-n-Propylamine         330U         330U         330U           soboli-n-Propylamine         330U         330U         330U           dorophenol         800U         800U         800U           dorophenol         330U         330U         330U           dorophenol         800U         800U         800U         800U	2-Methylphenol	330U	330U	330U	330U	330U
alene         330U         330U         330U           aniline         800U         800U         800U           aniline         800U         800U         800U           aniline         800U         800U         800U           nzene         330U         330U         330U           phenol         800U         800U         800U           phenol         800U         800U         800U           sodiphenylamine (1)         330U         330U         330U           so-Di-n-Propylamine         330U         330U         330U           tyl Phthalate         800U         800U         800U           thromphenol         330U         330U         330U           threne         330U         330U         330U           threne         330U         330U         330U           threne         330U         330U         330U           trichlorobenzene         330U         330U         330U           trichlorobenzene         800U         80U         80U	4-Methylphenol	330U	330U	3300	330U	3300
amiline         800U         800U         800U           aniline         800U         800U         800U           aniline         330U         330U         330U           phenol         330U         330U         330U           phenol         800U         800U         800U           phenol         330U         330U         330U           sodiphenol         330U         330U         330U           soblin-p-Propylamine         330U         330U         330U           syo-Di-n-Propylamine         330U         330U         330U           dry Phthalate         800U         800U         800U           dry Phthalate         330U         330U         330U	Naphthalene	330U	330U	330U	330U	330U
aniline         800U         800U         800U           aniline         800U         800U         800U           nnzene         330U         330U         330U           phenol         330U         330U         330U           phenol         800U         800U         800U           soodiphenylamine         330U         330U         330U           soo-Di-n-Propylamine         330U         330U         330U           soo-Di-n-Propylamine         800U         800U         800U           thromphenol         800U         800U         800U           thromphenol         330U         330U         330U           trichlorobenzene         330U         330U         330U           trichlorophenol         800U         800U         800U           trichlorophenol         800U         800U         800U	2-Nitroaniline	0008	N000	8000	8001	0008
aniline         800U         800U         800U           nnzene         330U         330U         330U           phenol         330U         330U         330U           phenol         800U         800U         800U           sodiphenol         330U         330U         330U           sos-Di-n-Propylamine         330U         330U         330U           cyl Phthalate         800U         800U         800U           drivephenol         800U         800U         800U           drivephenol         330U         330U         330U           drivephenol         800U         800U         800U	3-Nitroaniline	0008	MOOU	000R	M0008	0008
phenol         330U         330U           phenol         330U         330U           phenol         800U         800U           sodiphenylamine (1)         330U         330U           sos-Di-n-Propylamine         330U         330U           styl Phthalate         330U         330U           styl Phthalate         800U         800U           styl Phthalate         330U         330U           styl Phthalate         330U         330U           shrophenol         330U         330U           shrophenol         330U         330U           shrophenol         330U         330U           shrophenol         800U         800U           shrophenol         800U         800U	4-Nitroaniline	0008	M008	800U	WOOU	N008
phenol         330U         330U           phenol         800U         800U           sodiphenylamine         330U         330U           sob-Di-n-Propylamine         330U         330U           ctyl Phrhalate         330U         330U           dlorophenol         800U         800U           threne         330U         330U           330U         330U         330U           c         330U         330U           richlorobenzene         800U         800U           sagu         330U         330U           sagu	Nitrobenzene	330U	330U	330U	330U	330U
phenol         800U         800U         800U           ssodiphenylannine         330U         330U         330U           sso-Di-n-Propylannine         330U         330U         330U           ctyl Phthalate         800U         800U         800U           dlorophenol         800U         800U         800U           threne         330U         330U         330U           a         330U         330U         330U           a         330U         330U         330U           c         330U         800U         800U	2-Nitrophenol	330U	330U	330U	330U	330U
ssodiphenylamine (1)         330U         330U         330U           330U         330U         330U         330U           330U         330U         330U         330U           4 Phthalate         800U         800U         800U           4 Incoplication         330U         330U         330U           530U         330U         330U         330U           6         330U         330U         330U           7 inchlorobenzene         330U         330U         330U           800U         800U         800U         800U	4-Nitrophenol	8000	8000	8000	8000	D008
aso-Di-n-Propylamine         330U         330U         330U           styl Phthalate         330U         330U         330U           iteroplicated         800U         800U         800U           threne         330U         330U         330U           strength         330U         330U         330U           richlorobenzene         330U         330U         330U           richlorophenol         800U         800U         800U	N-Nitrosodiphenylamine (1)	330U	330U	330U	330U	330U
ctyl Phthalate         330U         330U         330U           tloroplicnol         800U         800U         800U           threne         330U         330U         330U           sand         330U         330U         330U           richlorobenzene         330U         330U         330U           richlorophenol         800U         800U         800U	N-Nitroso-Di-n-Propylamine	330U	330U	330U	330U	330U
Interest         800U         800U         800U           threne         330U         330U         330U           330U         330U         330U         330U           richlorobenzene         330U         330U         330U           richlorophenol         800U         800U         800U	Di-n-Octyl Phthalate	330U	330U	330U	330U	330U
threne 330U 330U 330U 330U 330U 330U 330U 330	Pentachlorophenol	0008	8000	8000	8000	8000
330U 330U 330U 330U 77ichlorobenzene 330U 800U 800U 800U	Phenanthrene	330U	330U	330U	330U	330U
330U 330U 330U 330U 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Phenol	3300	330U	3300	330U	330U
330U 330U 330U 330U 330U 800U 800U 800U	Ругепе	330U	330U	330U	330U	330U
1330U 3330U 3330U 330U 800U 800U	Pyridine	330U	330U	330U	330U	330U
0008 0000 0000 0000 0000 0000 0000 000	1,2,4-Trichlorobenzene	330U	330U	330U	330U	330U
11000	2,4,5-Trichlorophenol	M008	800U	0008	N008	0008
3300 3300	2,4,6-Trichlorophenol	330U	330U	330U	330U	330U

TPH - Total petroleum hydrocarbons PCBs - Polychloronated biphenyls

Location No.:	Location No.: 021-024 BH-10.0-10.5 021-024 BH-16.0-16.5	021-024 BH-16.0-16.5	021-025 BH-1.5-2.0	021-025 BH-1.5-2.0   021-025 BH-10.0-10.5   021-025 BH-14.0-14.5	021-025 BH-14.0-14.5
Sample Date:	7/13/94	7/13/94	7/12/94	7/12/94	7/12/94
Lab Sample No.:	9407473-07	9407473-08	9407405-08	9407405-09	9407405-10
Matrix	Soil	Soil	Soil	Soil	Soil
TPH (mg/kg)	18	10U	15	15	15
Pesticides/PCBs (ug/kg)					
a-BHC	0.67U	0.67U	0.67U	0.67U	0.67U
b-BHC	1.70	1.70	1.70	1.70	U.7U
'd-BHC	U.7U	1.7U	1.7U	1.70	1.7U
g-BHC	1.0U	1.0U	1.00	1.00	1.0U
Heptachlor	1.0U	1.0U	1.0U	1.0U	1.00
Aldrin	0.67U	U.67U	0.67U	0.67U	0.67U
Heptachlor Epoxide	1.70	1.7U	1.7U	1.7U	1.70
Endosulfan I	1.70	1.7U	1.7U	1.70	1.70
Dieldrin	0.33U	0.33U	0.33U	0.33U	0.33U
Endrin	1.3U	1.3U	1.3U	1.3U	1.3U
Endosulfan II	1.00	1.0U	1.0U	1.0U	1.0U
4,4'-DDT	2.3U	2.3U	2.3U	2.3U	2.3U
Endrin Aldehyde	3.3U	3.3U	3.3U	3.3U	3.3U
Methoxychlor	1.70	1.70	1.70	1.70	1.70
a-Chlordane	0.33U	0.33U	0.33U	0.33U	0.33U
g-Chlordane	1.7U	1.7U	1.70	1.70	U.7.U
+,+'-DDE	U.67U	0.67U	0.67U	0.67U	0.67U
1,4'-DDD	3.30	3.3U	3,311	3.3U	3.30
Bindosulfan Sullate	3.3U	3.30	3.3U	3.30	3.30
Endrin Ketone	3.3U	3.3U	3.3U	3.3U	3.3U
Foxaphene	33U	33U	33U	33U	33U

Analytical Results of Soil Samples Collected from Site 21 Minnesota Air National Guard Base

Table J.3

## Analytical Results of Soil Samples Collected from Site 21 Minnesota Air National Guard Base Duluth, Minnesota Table J.3

Location No.: Sample Date: Lab Sample No.:	021-024 BH-10.0-10.5 7/13/94 9407473-07	Location No.: 021-024 BH-10.0-10.5 021-024 BH-16.0-16.5 Sample Date: 7/13/94 7/13/94 9407473-07 9407473-08	021-025 BH-1.5-2.0 7/12/94 9407405.08	-10.5	621-0
Matrix	Soil	Soil	20-20-01-	240-C04-04	9407405-10
Pesticides/PCBs (ug/kg)			Coll	Soil	Soil
Chlordane (technical)	1 711				
PCB-1016	1101	1.70	1.70	1.70	1.70
PCB-1221	0/1	170	17.0	17U	1171
PCR-1332	071	170	U71	171	2.7
DE 1343	170	17U	170	1711	
1 CD 1242	17.0	17.0	170	1171	0/1
1 CD-1248	17.0	17.0	1717	1121	27
PCB-1260	17.0	177	1711	07.	170
			2	0/1	17U
Metals (mg/kg)					
Silver	311	37.1			
Aluminum	508 61	000	0.6U	0.60	1190
Arsenic	000,21	8,06()	10,100	13,000	12.900
Beryffum	110	0.7			\$0.
Cadminn	07	2((	8.0	0.1	) C
Chromium	0.20	(0.07	0.8U	0.80	250
Conner	23	7	-18	24	3,5
Mercury	55.4	61.6	38	48	0.7
Nieri	01.0	0.10	0.10	0.117	1110
l cad	17	17	20	11:	0.10
Antimomy	5.0	2.4	3.9	2.0	
S. dominority	20	110	10		2.5
Principles.	0.80	0.80	0.811	01	01
Timinal Line	0.40	D+ 0	115.0	0.00	0.80
	67	52	35	0.5	) T 0
					23

TPH - Total petroleum hydrocarbons PCBs - Polychloronated biphenyls

ug/kg - micrograms per kilogram mg/kg - miligrams per kilogram

Table J.4
Analytical Results of Groundwater Samples Collected from Site 21
Minnesota Air National Guard Base
Duluth, Minnesota

-	Location No.: 021-009MW-GW02	021-010MW-GW02	021-010	021-0	021-0	021-0
Sample Date:     Lab Sample No.:	10/6/94 9410269-02	10/6/94 9410269-04	10/6/94	10/6/94	7/25/94	10/6/94
VOCs (ug/L) Matrix	Wafer	Wafer	Wafer	Water	Water	Wafer
	101	101	100	100	001	100
Вепzепе	SU	SU	90	50	50	SU
Bromodichloromethane	su	SU	SU	5U	SU	20
Bromoform	SU	SU	SU	SU	SU	SU.
Bromomethane	100	100	100	100	100	100
2-Butanone	2011	20U	2011	2011	200	20U
Carbon Disulfide	50	SU	SU	50	SU	50
Carbon Tetrachloride	SU	50	SU	50	5U	SU
Chlorobenzene	. 115	511	SU	5U	511	50
Chloroethane	100	1011	1101	101	101	100
2-Chloroethylvinylether	100	100	D01	10U	10U	100
Chloroform	5U	5U	SU	50	SU	50
Chloromethane	100	100	10U	10U	100	10U
Dibromochloromethane	SU	SU	SU.	SU	su	20
1,1-Dichloroethane	SU	SU	SU	SU	su	50
1,1-Dichloroethene	SU SU	SU	SU.	SU	50	SU
1,2-Dichloroethane	50	SU	SU.	5U	SU	5U
total -1,2-Dichloroethene	50	SU	SU	SU	su.	SU
1,2-Dichloropropane	50	SU	SU	SU	su	SU
cis-1,3-Dichloropropene	SU	SU	su	5U	5U	SU
trans-1,3-Dichloropropene	SU	SU	SU	SU	su	20
Ethylbenzene	SU	SU	SU	SU	SU	DS.
2-Hexanone	100	100	100	1011	100	101
Methylene Chloride	50	SU	50	SU	su	SU
4-Methyl-2-Pentanone	100	100	100	100	10U	NO1
Styrene	SU.	SU	50	SU	su su	SU
1,1,2,2-Tetrachloroethane	50	5U	50	50	SU	50
Tetrachloroethene	50	50	SU	SU	SU	50
Toluene	SU	5U	su	SU	SU	50
1,1,1-Trichloroethane	5U	5U	SU	SU	SU	50
1,1,2-Trichloroethane	50	5U	SU	SU	SU	5U
Trichloroethene	SU	SU	50	89	3.0	SU
Trichlorofluoromethane	5U	SU	50	SU	SU	SU
Vinyl Acetate	100	10U	100	10U	100	100
Vinyl Chloride	100	100	100	100	100	10U
Xylenes (total)	50	50	50	SU	50	SU

Table J.4
Analytical Results of Groundwater Samples Collected from Site 21
Minnesota Air National Guard Base
Duluth, Minnesota

Location No.:	Location No.: 021-009MW-GW01	021-010MW-GW01	021-010MW-GW01 DUP	021-014MW-GW01	021-026MW-GW01	021-026MW-GW02
Sample Date:	7/22/94	7/22/94	7/22/94	7/22/94	7/22/94	7/25/94
Lab Sample No:	9407999-03	9407999-05	9407999-06	9407999-07	9407999-08	9407971-01
Metals (mg/L) Matrix	Water	Water	Water	Water	Water	Water
Aluminum	1.06	3.00	1.34	17.1	2.96	1.30
Antimony	0.01U	0.01U	0.010	0.010	0.01U	0.010
Arsenic	0.01U	0.01U	0.01U	0.01U	0.01U	0.01U
Beryllium	0.004U	0.004U	0.004U	0.004U	0.0040	0.004U
Cadmium	0.0002	0.0002	0.0001U	0.0003	0.0004	0.0002
Chromium	0.024	0.004	0.002U	0.025	0.004	0.003
Copper	0.02	0.05	0.01U	0.17	0.03	0.02
Lead	0.003U	0.003U	0.003U	0.003U	0.003U	0.003U
Mercury	0.0002U	0.0002U	0.0002U	0.0002U	0.0002U	0.0002U
Nickel	0.62	0.012	0.008	0.051	0.009	910.0
Selenium	0.005U	0.005U	0.005U	0.005U	0.005U	0.008U
Silver	N/A	N/A	N/A	N/A	N/A	N/A
Thallium	0.004U	0.004U	0.004U	0.004U	0.004U	0.004U
Zinc	0.03	0.05	0.02	0.07	0.02	000

Analytical Results of Sediment Samples Collected from Site 21
Minnesota Air National Guard Base
Duluth, Minnesota

Location No.:	021-004SD	021-005SD	021-006SD	021-007SD	021-007SD DUP
Sample Date:	10/4/94	10/4/94	10/4/94	10/4/94	10/4/94
VOCs (ug/kg) Matrix	Sediment	Sediment	Sediment	Sediment	Sediment
Acetone	35	100	100	12	22
Benzene	50	5	SU	SU	SU
Bromodichloromethane	5U	50	50	50	SU
Bromoform	50	50	5U	SU	20
Вгототетапе	100	100	100	10U	10U
2-Butanone	20U	20U	20U	20U	20U
Carbon Disulfide	50	50	50	SU	50
Cartyon Tetrachloride	SU	SU	5U	50	50
Chlorobenzene	SU	5	SU	50	SU.
Chloroethane	100	100	101	10n	101
2-Chloroethylvinylether	100	100	100	100	100
Chloroform	50	50	SU	SU	SU
Chloromethane	100	100	100	100	10U
Dibromochloromethane	SU.	SU.	2U	ns	ns
1,1-Dichloroethane	SU.	SU	50	SU	SU
1, 1-Dichloroethene	50	SU	50	5U	SU
1,2-Dichloroethane	50	50	SU	50	50
total -1,2-Dichloroethene	2n	SU	ns	SU.	20
1,2-Dichloropropane	513	91	511	50	50
cis-1,3-Dichloropropene	50	SU	50	SU	50
trans-1,3-Dichloropropene	50	50	SU	50	SU
Ethylbenzene	ns	20	ns	20	SU
2-Hexanone	100	10U	101	101	101
Methylene Chloride	13	400	9	23	11
4-Methyl-2-Pentanone	100	100	101	100	100
Styrene	SU	2C	50	SU	20
1,1,2,2-Tetrachloroethane	511	SU	513	51)	511
Tetrachloroethene	50	5.0	5U	50	50
Toluene	50	SU.	SU	50	20
1,1,1-Trichloroethane	50	50	20	2U	SU
1,1,2-Ti. soroethane	50	50	SU	SU	50
Trichloroethene	51)	5U	SU	SU	SU
Trichloroffuoromethane	SU	SU	SU	SU	SU
Vinyl Acetate	10U	100	100	100	100
Vinyl Chloride	10U	10U	100	10U	10U
Xylenes (total)	511	5U	511	511	SU

# Table J.5 Analytical Results of Sediment Samples Collected from Site 21 Minnesota Air National Guard Base Duluth, Minnesota

Location No.:	021-004SD	021-005SD	021-006SD	021-007SD	021-007SD DUP
Sample Date:	10/4/94	10/4/94	10/4/94	10/4/94	10/4/94
Lab Sample No.:	9410146-05	9410146-02	9410146-01	9410146-04	9410146-03
SVOCs (ug/kg) Matrix	Sediment	Sediment	Sediment	Sediment	Sediment
Acenaphthene	330U	330U	330U	330U	330U
Acenaphthylene	3301	330U	330U	330U	330U
Aniline	330U	330U	330U	330U	330U
Anthracene	3300	330U	330U	330U	330U
Benzo (a) Anthracene	330U	330U	330U	330U	330U
Benzo (b) Fluoranthene	330U	330U	330U	330U	330U
Benzo (k) Fluoranthene	330U	330U	330U	330U	330U
Benzo (a) Pyrene	530	770	3000	330U	330U
Benzoic Acid	1,600U	1,600U	1,6001	1,600U	1,6001
Benzo(g,h,i)Perylene	330U	330U	330U	330U	330U
Benzyl alcohol	330U	330U	330U	330U	330U
4-Bromophenylphenyl ether	330U	330U	330U	330U	330U
Butylbenzylphthalate	330U	330U	330U	330U	330U
di-n-Butyl phthalate	330U	33017	330	330U	330U
Carbazole	330U	330U	330U	330U	330U
4-Chloroaniline	330U	330U	330U	330U	330U
bis(2-Chloroethoxy)Methane	330U	330U	330U	330U	330U
bis(2-Chloroethyl)Ether	33011	330U	330U	330U	3300
bis(2-Chloroisopropyl)Ether	330U	330U	330U	330U	3300
4-Chloro-3-Methylphenol	330U	330U	330U	330U	3300
2-Chloronaphthalene	330U	330U	330U	330U	3300
2-Chlorophenol	3300	330U	33011	330U	3300
4 Chlorophenylphenyl ether	3300	3300	3300	3300	3300
Chrysene	330U	330U	330U	330U	330U
Dibenz(a,h) Anthracene	3300	330U	330U	3300	3300
Dibenzofuran	330U	330U	330U	3300	3300
1,2 -Dichlorobenzene	3300	3300	3300	3300	3300
1,3-Dichlorobenzene	330U	330U	330U	330U	330U
1,4-Dichlorobenzene	3300	330U	3300	3300	330U
3,3'-Dichlorobenzidine	3300	330U	330U	330U	330U
2,4-Dichlorophenol	3300	3301	330U	330U	330U
Diethylphthalate	330U	330U	3300	3300	330U
2,4-Dimethylphenol	3300	3300	330U	330U	330U
Dimethyl Phthalate	330U	330U	330U	330U	330U

Table J.5
Analytical Results of Sediment Samples Collected from Site 21
Minnesota Air National Guard Base
Duluth, Minnesota

Location No.:	021-004SD	021-005SD	021-006SD	021-007SD	021-007SD DUP
Sample Date:	10/4/94	10/4/94 9410146-02	10/4/94	10/4/94	10/4/94
SVOCs (ug/kg) Matrix	Sediment	Sediment	Sediment	Sediment	Sediment
4,6-Dinitro-2-Methylphenol	800U	0008	800U	0008	0008
2,4-Dinitrophenol	8000	800U	800U	1008 1008	8001
2,4-Dinitrotoluene	330U	330U	33011	330U	330U
2,6-Dinitrotoluene	330U	330U	330U	330U	330U
1,2-Diphenylhydrazine	330U	330U	330U	330U	330U
bis (2-Ethylhexyl) Phthalate	330U	470	1,600	330U	330U
Fluoranthene	330U	330U	330U	330U	330U
Fluorene	330U	330U	330U	330U	330U
Hexachlorobenzene	330U	330U	330U	330U	330U
Hexachlorobutadiene	330U	330U	330U	330U	330U
Hexachloroethane	330U	330U	330U	330U	330U
Hexachlorocyclopentadiene	330U	330U	330U	330U	330U
Indeno (1,2,3-cd) Pyrene	330U	330U	330U	330U	330U
Isophorone	330U	330U	330U	330U	330U
2-Methylnaphthalene	330U	330U	3300	3300	330U
2-Methylphenol	33011	3300	330U	330U	330U
4-Methylphenol	330U	330U	330U	330U	3300
Naphthalene	330U	520	330U	330U	330U
2-Nitroaniline	33011	33013	330U	330U	330U
3 Nitroauiline	8000	8(X)I	8000	8001	8000
4-Nitroaniline	8000	8000	800U	8000	8000
Nitrobenzene	330U	330U	330U	330U	J330U
2-Nitrophenol	330U	330U	330U	330U	330U
4-Nitrophenol	8000	N(X)U	8000	NOO8	8000
N-Nitrosodiphenylamine (1)	330U	330U	3300	330U	330U
N-Nitroso-Di-n-Propylamine	330U	330U	330U	330U	3300
Di-n-Octyl Phthalate	330U	330U	330U	330U	330U
Pentachlorophenol	8(X)[]	0008	800U	0008	1008
Phenanthrene	330U	330U	330U	330U	330U
Phenol	330U	330U	330U	330U	3300
Pyrene	330U	330U	330U	330U	330U
Pyridine	330U	330U	330U	330U	330U
1,2,4-Trichlorobenzene	330U	330U	330U	33013	3300
2,4,5-Trichlorophenol	8000	800U	8000	300D	8000
2,4,6-Trichlorophenol	330U	330U	330U	330U	330U

Analytical Results of Sediment Samples Collected from Site 21 Minnesota Air National Guard Base Duluth, Minnesota Table J.5

Location No.: Sample Date:	021-004SD 10/4/94	021-005SD 10/4/94	021-006SD 10/4/94	021-007SD 10/4/94	021-007SD DUP 10/4/94
Lab Sam	9410146-05	9410146-02	9410146-01	9410146-04	9410146-03
Pesticides Matrix	Sediment	Sediment	Sediment	Sediment	Sediment
TPH (mg/kg)	450	230	20	74	120
Pesticides/PCBs (ug/kg)					
a-BIIC	0.67U	0.67U	0.67U	0.67U	0.67U
b-BHC	1.7U	1.70	1.70	1.7U	U.7.U
d-BHC	1.71	1.70	1.70	1.70	17.71
g-BHC	1.0U	1.00	1.00	1.00	1.00
Heptachlor	1.00	1.0U	1.0U	1.0U	1.00
Aldrin	0.67U	0.67U	0.67U	0.67U	0.67U
Heptachlor Epoxide	1.70	1.71	1.70	1.70	1.70
Endosulfan I	1.7U	1.7U	1.70	1.70	U.7.U
Dieldrin	0.33U	0.33U	0.33U	0.33U	0.33U
Endrin	1.3U	1.30	1.3U	1.3U	1.3U
Endosulfan II	1.0U	1.0U	1.0U	1.01	1.011
4,4' DDT	2.3U	2.3U	2.3U	2.30	2.3U
Endrin Aldehyde	3.3U	3.3U	3.3U	3.3U	3.3U
Methoxychlor	1.7U	1.70	1.7U	1.7U	1.7U
a-Chlordane	0.331	0.33U	0.33U	0.33U	0.33U
g-Chlordane	1.70	1.70	1.70	1.7U	1.7U
4,4'-DDE	D.67U	0.67U	0.67U	U.67U	0.67U
4,4'-DDD	3.31	3.3U	3.3U	3.3U	3.3U
Endosulfan Sulfate	3.31)	3.3U	3.3U	3.3U	3.30
Endrin Ketone	3.3U	3.3U	3.3U	3.3U	3.3U
Toxaphene	33U	33U	33U	33U	33U
Chlordane (technical)	1.7U	U.7U	1.7U	1.7U	U.7U
PCB-1016	170	17U	17U	17U	17U
PCB-1221	17.0	170	17U	17U	17U
PCB-1232	17.0	17U	170	U7U	17U
PCB-1242	17U	170	U7U	17U	17U
PCB-1248	17U	170	17U	170	170
PCB-1254	17.0	17.0	170	17U	170
PCB-1260	170	17.0	170	17U	17U

Analytical Results of Sediment Samples Collected from Site 21 Minnesota Air National Guard Base Duluth, Minnesota Table J.5

Location No.: 021-004SD	021-004SD	021-005SD	021-005ASD	021-006SD	021-007SD
Sample Date: Lab Sample No:	7/23/94 9407998-10	7/23/94	7/23/94	7/23/94	7/23/94
Metals (mg/kg) Matrix	Soil	Soil	Soil	Soil	Soil
Aluminum	1,870	11,100	10,100	9,070	4,800
Antimony	110	110	ΩI	10	10
Arsenic	10	SU		5	7
Beryllium	0.40	9.0	9.0	0.7	0.4U
Cadmium	1.1	1.3	0.8U	08.0	1.3
Chromium	ю	17	17	16	7
Copper	53	56	19	76	50
Lead	5.5	26	1.3	36	7.5
Mercury	0.1U	0.1U	0.10	0.1U	0.10
Nickel	(19	16	11	14	6
Selenium	0.81	0.8U	0.8U	0.8U	0.8U
Silver	N/A	N/A	N/A	N/A	N/A
Thallium	0.40	0.40	0.40	0.40	0.40
Zinc	48	70	43	135	53

Table J.6
Analytical Results of SVOCs and Metals in Soil Samples at Site No. 17
Minnesota Air National Guard Base

	Location No.:	017-021BH 1.5 - 2	017-021BH 5 - 5.5
	Sample Date:	5/19/95	5/19/95
	Lab Sample No.:	9505766-02	9505766-03
SVOCs	Matrix:	Soil	Soil
Acenaphthene		330 U	330 U
Acenaphthylene		330 U	330 U
Aniline		330 U	330 U
Anthracene		330 U	330 U
Benzo(a)anthracene		330 U	330 U
Benzo(b)fluoranthene		330 U	330 U
Benzo(k)fluoranthene		330 U	330 U
Benzo(a)pyrene	l	330 U	330 U
Benzoic acid		1,600 U	1,600 U
Benzo(g,h,i)perylene		330 U	330 U
Benzyl alcohol		330 U	330 U
4-Bromophenylphenyl ether		330 U	330 U
Butylbenzylphthalate		330 U	330 U
Di-n-butyl phthalate		330 U	330 U
Carbazole		330 U	330 U
4-Chloroaniline		330 U	330 U
Bis(2-chloroethoxy)methane		330 U	330 U
Bis(2-chloroethyl)ether		330 U	330 U
Bis(2-chloroisopropyl)ether		330 U	330 U
4-Chloro-3-methylphenol		330 U	330 U
2-Chloronaphthalene		330 U	330 U
2-Chlorophenol		330 U	330 U
4-Chlorophenylphenyl ether		330 U	330 U
Chrysene		330 U	330 U
Dibenz(a,h)anthracene		330 U	330 U
Dibenzofuran		330 U	330 U
1,2-Dichlorobenzene		330 U	330 U
1,3-Dichlorobenzene		330 U	330 U
1,4-Dichlorobenzene		330 U	330 U
3,3'-Dichlorobenzidine		330 U	330 U
2.4-Dichlorophenol		330 U	330 U
Diethylphthalate		330 U	330 U
2.4-Dimethylphenol		330 U	330 U
Dimethyl phthalate		330 U	330 U
4.6-Dinitro-2-methylphenol		800 U	800 U
2,4-Dinitrophenol		800 U	800 U

Table J.6
Analytical Results of SVOCs and Metals in Soil Samples at Site No. 17
Minnesota Air National Guard Base

	Location No.:	017-021BH 1.5 - 2	017-021BH 5 - 5.5
	Sample Date:	5/19/95	5/19/95
	Lab Sample No.:	9505766-02	9505766-03
SVOCs	Matrix:	Seil	Soil
2,4-Dinitrotoluene		330 U	330 U
2.6-Dinitrotoluene		330 U	330 U
1,2-Diphenylhydrazine		330 U	330 U
Bis(2-ethylhexyl)phthalate		330 U	330 U
Fluoranthene		330 U	330 U
Fluorene		330 U	330 U
Hexachlorobenzene		330 U	330 U
Hexachlorobutadiene		330 U	330 U
Hexachloroethane		330 U	330 U
Hexachlorocyclopentadiene		330 U	330 U
Indeno(1,2,3-cd)pyrene		330 U	330 U
Isophorone		330 U	330 U
2-Methylnaphthalene		330 U	330 U
2-Methylphenol		330 U	330 U
4-Methylphenol		330 U	330 U
Naphthalene		330 U	330 U
2-Nitroaniline		800 U	800 U
3-Nitroaniline		800 U	800 U
4-Nitroaniline		800 U	800 U
Nitrobenzene		330 U	330 U
2-Nitrophenol		330 U	330 U
4-Nitrophenol		800 U	800 U
N-Nitrosodiphenylamine (1)		330 U	330 U
N-Nitroso-di-n-propylamine		330 U	330 U
Di-n-octyl phthalate		330 U	330 U
Pentachlorophenol		800 U	800 U
Phenanthrene		330 U	330 U
Phenol		330 U	330 U
Pyrene		330 U	330 U
Pyridine		330 U	330 U
1,2,4-Trichlorobenzene		330 U	330 U
2,4,5-Trichlorophenol		800 U	800 U
2.4,6-Trichlorophenol		330 U	330 U
	Location No.:	,	017-021BH 5 - 5.5
	Sample Date:	5/19/95	5/19/95
	Lab Sample No.:	9505766-02	9505766-03
Metals	Matrix:	Soil	Soil
Mercury, Total		0.4 U	0.4 U

Table J.6
Analytical Results of SVOCs and Metals in Soil Samples at Site No. 17
Minnesota Air National Guard Base

Location No.:	017-022BH 1.5 - 2	017-023BH 1.5 - 2	017-023BH 5 - 5.5
Sample Date:	5/17/95	5/17/95	5/17/95
Lab Sample No.:	9505673-09	9505673-10	9505673-11
SVOCs Matrix:	Soil	Soil	Soil
Acenaphthene	3,300 U	330 U	330 U
Acenaphthylene	3,300 U	330 U	330 U
Aniline	3,300 U	330 U	330 U
Anthracene	3,300 U	330 U	330 U
Benzo(a)anthracene	3,300 U	330 U	330 U
Benzo(b)fluoranthene	3,300 U	330 U	330 U
Benzo(k)fluoranthene	3,300 U	330 U	330 U
Benzo(a)pyrene	3,300 U	330 U	330 U
Benzoic acid	16,000 U	1,600 U	1,600 U
Benzo(g,h,i)perylene	3,300 U	330 U	330 U
Benzyl alcohol	3,300 U	330 U	330 U
4-Bromophenylphenyl ether	3,300 U	330 U	330 U
Butylbenzylphthalate	3,300 U	330 U	330 U
Di-n-butyl phthalate	3,300 U	330 U	330 U
Carbazole	3,300 U	330 U	330 U
4-Chloroaniline	3,300 U	330 U	330 U
Bis(2-chloroethoxy)methane	3,300 U	330 U	330 U
Bis(2-chloroethyl)ether	3,300 U	330 U	330 U
Bis(2-chloroisopropyl)ether	3,300 U	330 U	330 U
4-Chloro-3-methylphenol	3,300 U	330 U	330 U
2-Chloronaphthalene	3,300 U	330 U	330 U
2-Chlorophenol	3,300 U	330 U	330 U
4-Chlorophenylphenyl ether	3,300 U	330 U	330 U
Chrysene	3,300 U	330 U	330 U
Dibenz(a,h)anthracene	3,300 U	330 U	330 U
Dibenzofuran	3,300 U	330 U	330 U
1.2-Dichlorobenzene	3,300 U	330 U	330 U
1,3-Dichlorobenzene	3,300 U	330 U	330 U
1.4-Dichlorobenzene	3,300 U	330 U	330 U
3.3'-Dichlorobenzidine	3,300 U	330 U	330 U
2.4-Dichlorophenol	3,300 U	330 U	330 U
Diethylphthalate	3,300 U	330 U	330 U
2.4-Dimethylphenol	3,300 U	330 U	330 U
Dimethyl Phthalate	3,300 U	330 U	330 U
4,6-Dinitro-2-methylphenol	8,000 U	800 U	800 U
2,4-Dinitrophenol	8,000 U	800 U	800 U

Table J.6
Analytical Results of SVOCs and Metals in Soil Samples at Site No. 17
Minnesota Air National Guard Base

Location No.:	017-022BH 1.5 - 2	017-023BH 1.5 - 2	017-023BH 5 - 5.5
Sample Date:	5/17/95	5/17/95	5/17/95
Lab Sample No.:	9505673-09	9505673-10	9505673-11
SVOCs Matrix:	Soil	Soil	Soil
2,4-Dinitrotoluene	3,300 U	330 U	330 U
2,6-Dinitrotoluene	3,300 U	330 U	330 U
1.2-Diphenylhydrazine	3,300 U	330 U	330 U
Bis(2-ethylhexyl)phthalate	3,300 U	330 U	330 U
Fluoranthene	3,300 U	330 U	330 U
Fluorene	3,300 U	330 U	330 U
Hexachlorobenzene	3,300 U	330 U	330 U
Hexachlorobutadiene	3,300 U	330 U	330 U
Hexachloroethane	3,300 U	330 U	330 U
Hexachlorocyclopentadiene	3,300 U	330 U	330 U
Indeno(1,2,3-cd)pyrene	3,300 U	330 U	330 U
Isophorone	3,300 U	330 U	330 U
2-Methylnaphthalene	3,300 U	330 U	330 U
2-Methylphenol	3,300 U	330 U	330 U
4-Methylphenol	3,300 U	330 U	330 U
Naphthalene	3,300 U	330 U	330 U
2-Nitroaniline	8,000 U	800 U	800 U
3-Nitroaniline	8,000 U	800 U	800 U
4-Nitroaniline	8.000 U	800 U	800 U
Nitrobenzene	3,300 U	330 U	330 U
2-Nitrophenol	3,300 U	330 U	330 U
4-Nitrophenol	8,000 U	800 U	800 U
N-Nitrosodiphenylamine (1)	3,300 U	330 U	330 U
N-Nitroso-di-n-propylamine	3,300 U	330 U	330 U
Di-n-octyl phthalate	3,300 U	330 U	330 U
Pentachlorophenol	8,000 U	800 U	800 U
Phenanthrene	3,300 U	330 U	330 U
Phenol	3,300 U	330 U	330 U
Pyrene	3,300 U	330 U	330 U
Pyridine	3,300 U	330 U	330 U
1,2,4-Trichlorobenzene	3,300 U	330 U	330 U
2,4.5-Trichlorophenol	8,000 U	800 U	800 U
2.4.6-Trichlorphenol	3,300 U	330 U	330 U
Location No.:	017-022BH 1.5 - 2	017-023BH 1.5 - 2	017-023BH 5 - 5.5
Sample Date:	5/17/95	5/17/95	5/17/95
Lab Sample No.:	9505673-09	9505673-10	9505673-11
Metals Matrix:	Soi'	Soil	Soil
Mercury, Total	0.1 U	0.1 U	0.1 U

Table J.6 Analytical Results of SVOCs and Metals in Soil Samples at Site No. 17 Minnesota Air National Guard Base

Location No.:	017-024BH 2 - 2.5	017-024BH 5.5 - 6	017-025BH 2 - 2.5
Sample Date:	5/17/95	5/17/95	5/17/95
Lab Sample No.:	9505673-05	9505673-06	9505673-07
SVOCs Matrix:	Soil	Soil	Soil
Acenaphthene	3,300 U	3,300 U	3,300 U
Acenaphthylene	3,300 U	3,300 U	3,300 U
Aniline	3,300 U	3,300 U	3,300 U
Anthracene	3,300 U	3,300 U	3,300 U
Benzo(a)anthracene	3,300 U	3,300 U	3,300 U
Benzo(b)fluoranthene	3,300 U	3,300 U	3,300 U
Benzo(k)fluoranthene	3,300 U	3,300 U	3,300 U
Benzo(a)pyrene	3,300 U	3,300 U	3,300 U
Benzoic acid	16,000 U	16,000 U	16,000 U
Benzo(g,h,i)perylene	3,300 U	3,300 U	3,300 U
Benzyl alcohol	3,300 U	3,300 U	3,300 U
4-Bromophenylphenyl ether	3,300 U	3,300 U	3,300 U
Butylbenzylphthalate	3,300 U	3,300 U	3,300 U
Di-n-butyl phthalate	3,300 U	3,300 U	3,300 U
Carbazole	3,300 U	3,300 U	3,300 U
4-Chloroaniline	3,300 U	3,300 U	3,300 U
Bis(2-chloroethoxy)methane	3,300 U	3,300 U	3,300 U
Bis(2-chloroethyl)ether	3,300 U	3,300 U	3,300 U
Bis(2-chloroisopropyl)ether	3,300 U	3,300 U	3,300 U
4-Chloro-3-methylphenol	3,300 U	3,300 U	3,300 U
2-Chloronaphthalene	3.300 U	3,300 U	3,300 U
2-Chlorophenol	3,300 U	3,300 U	3,300 U
4-Chlorophenylphenyl ether	3,300 U	3,300 U	3,300 U
Chrysene	3,300 U	3,300 U	3,300 U
Dibenz(a,h)anthracene	3,300 U	3,300 U	3,300 U
Dibenzofuran	3,300 U	3,300 U	3,300 U
1,2-Dichlorobenzene	3,300 U	3,300 U	3,300 U
1,3-Dichlorobenzene	3,300 U	3,300 U	3,300 U
1.4-Dichlorobenzene	3,300 U	3,300 U	3,300 U
3,3'-Dichlorobenzidine	3,300 U	3,300 U	3,300 U
2.4-Dichlorophenol	3,300 U	3,300 U	3,300 U
Diethylphthalate	3.300 U	3,300 U	3,300 U
2,4-Dimethylphenol	3,300 U	3,300 U	3,300 U
Dimethyl Phthalate	3,300 U	3,300 U	3,300 U
4.6-Dinitro-2-methylphenol	8,000 U	8,000 U	8,000 U
2,4-Dinitrophenol	8,000 U	8,000 U	8,000 U

Table J.6
Analytical Results of SVOCs and Metals in Soil Samples at Site No. 17
Minnesota Air National Guard Base

Location No.:	017-024BH 2 - 2.5	017-024BH 5.5 - 6	017-025BH 2 - 2.5
Sample Date:	5/17/95	5/17/95	5/17/95
Lab Sample No.:	9505673-05	9505673-06	9505673-07
SVOCs Matrix:	Soil	Soil	Soil
2,4-Dinitrotoluene	3,300 U	3,300 U	3,300 U
2.6-Dinitrotoluene	3,300 U	3,300 U	3,300 U
1,2-Diphenylhydrazine	3,300 U	3,300 U	3.300 U
Bis(2-ethylhexyl)phthalate	3,300 U	3,300 U	3.300 U
Fluoranthene	3,300 U	3,300 U	6,000
Fluorene	3,300 U	3,300 U	3.300 U
Hexachlorobenzene	3,300 U	3,300 U	3.300 U
Hexachlorobutadiene	3,300 U	3,300 U	3.300 U
Hexachloroethane	3,300 U	3,300 U	3.300 U
Hexachlorocyclopentadiene	3,300 U	3,300 U	3.300 U
Indeno(1,2,3-cd)pyrene	3,300 U	3,300 U	3.300 U
Isophorone	3,300 U	3,300 U	3.300 U
2-Methylnaphthalene	3,300 U	3,300 U	3.300 U
2-Methylphenol	3,300 U	3,300 U	3.300 U
4-Methylphenol	3,300 U	3,300 U	3.300 U
Naphthalene	3,300 U	3,300 U	3.300 U
2-Nitroaniline	8,000 U	8,000 U	8.000 U
3-Nitroaniline	8,000 U	8,000 U	8.000 U
4-Nitroaniline	8,000 U	8,000 U	8.000 U
Nitrobenzene	3,300 U	3,300 U	3.300 U
2-Nitrophenol	3,300 U	3,300 U	3.300 U
4-Nitrophenol	8,000 U	8,000 U	8,000 U
N-Nitrosodiphenylamine (1)	3,300 U	3,300 U	3,300 U
N-Nitroso-di-n-propylamine	3,300 U	3,300 U	3.300 U
Di-n-octyl phthalate	3,300 U	3,300 U	3.300 U
Pentachlorophenol	8,000 U	8,000 U	8,000 U
Phenanthrene	3,300 U	3,300 U	4,400
Phenol	3,300 U	3,300 U	3.300 U
Pyrene	3,300 U	3.300 U	4,300
Pyridine	3,300 U	3,300 U	3,300 U
1.2,4-Trichlorobenzene	3,300 U	3,300 U	3.300 U
2.4,5-Trichlorophenol	8,000 U	8,000 U	8.000 U
2,4,6-Trichlorphenol	3,300 U	3,300 U	3.300 U
Location No.:	017-024BH 2 - 2.5	017-024BH 5.5 - 6	017-025BH 2 - 2.5
Sample Date:	5/17/95	5/17/95	5/17/95
Lab Sample No.:	9505673-05	9505673-06	9505673-07
Metals Matrix:	Soil	Soil	Soil
Mercury, Total	0.1 U	0.2	0.1 U

Table J.6 Analytical Results of SVOCs and Metals in Soil Samples at Site No. 17 Minnesota Air National Guard Base

Location No.:	017-025BH 5 - 5.5	017-028BH 1.5 - 2	017-028BH 5 - 5.5
Sample Date:	5/17/95	5/17/95	5/17/95
Lab Sample No.:	9505673-08	9505673-12	9505673-13
SVOCs Matrix:	Soil	Soil	Soil
Acenaphthene	3,300 U	3,300 U	3.300 U
Acenaphthylene	3,300 U	3,300 U	3.300 U
Aniline	3,300 U	3,300 U	3,300 U
Anthracene	3,300 U	3,300 U	3,300 U
Benzo(a)anthracene	3,300 U	3,300 U	3,300 U
Benzo(b)fluoranthene	3,300 U	3.300 U	3.300 U
Benzo(k)fluoranthene	3,300 U	3,300 U	3.300 U
Benzo(a)pyrene	3,300 U	3,300 U	3.300 U
Benzoic acid	16,000 U	16,000 U	16.000 U
Benzo(g,h,i)perylene	3,300 U	3.300 U	3.300 U
Benzyl alcohol	3,300 U	3,300 U	3,300 U
4-Bromophenylphenyl ether	3,300 U	3,300 U	3,300 U
Butylbenzylphthalate	3,300 U	3,300 U	3,300 U
Di-n-butyl phthalate	3,300 U	3,300 U	3,300 U
Carbazole	3,300 U	3,300 U	3,300 U
4-Chloroaniline	3,300 U	3,300 U	3.300 U
Bis(2-chloroethoxy)methane	3,300 U	3,300 U	3,300 U
Bis(2-chloroethyl)ether	3,300 U	3.300 U	3.300 U
Bis(2-chloroisopropyl)ether	3,300 U	3,300 U	3,300 U
4-Chloro-3-methylphenol	3.300 U	3,300 U	3,300 U
2-Chloronaphthalene	3,300 U	3,300 U	3.300 U
2-Chlorophenol	3,300 U	3.300 U	3,300 U
4-Chlorophenylphenyl ether	3,300 U	3,300 U	3.300 U
Chrysene	3,300 U	3,300 U	3,300 U
Dibenz(a,h)anthracene	3,300 U	3.300 U	3,300 U
Dibenzofuran	3.300 U	3,300 U	3,300 U
1,2-Dichlorobenzene	3,300 U	3.300 U	3,300 U
1,3-Dichlorobenzene	3,300 U	3,300 U	3.300 U
1.4-Dichlorobenzene	3,300 U	3,300 U	3,300 U
3,3'-Dichlorobenzidine	3,300 U	3.300 U	3.300 U
2,4-Dichlorophenol	3,300 U	3,300 U	3.300 U
Diethylphthalate	3,300 U	3.300 U	3.300 U
2,4-Dimethylphenol	3,300 U	3,300 U	3,300 U
Dimethyl Phthalate	3,300 U	3.300 U	3.300 U
4,6-Dinitro-2-methylphenol	8,000 U	8.000 U	8.000 U
2,4-Dinitrophenol	8.000 U	8.000 U	8.000 U

Table J.6 Analytical Results of SVOCs and Metals in Soil Samples at Site No. 17 Minnesota Air National Guard Base

Location No.:	017-025BH 5 - 5.5	017-028BH 1.5 - 2	017-028BH 5 - 5.5
Sample Date:	5/17/95	5/17/95	5/17/95
Lab Sample No.:	9505673-08	9505673-12	9505673-13
SVOCs Matrix:	Soil	Soil	Soil
2,4-Dinitrotoluene	3.300 U	3,300 U	3,300 U
2.6-Dinitrotoluene	3,300 U	3,300 U	3,300 U
1,2-Diphenylhydrazine	3,300 U	3,300 U	3,300 U
Bis(2-ethylhexyl)phthalate	3,300 U	3.300 U	3,300 U
Fluoranthene	3,300 U	3.300 U	3,300 U
Fluorene	3,300 U	3,300 U	3,300 U
Hexachlorobenzene	3.300 U	3,300 U	3,300 U
Hexachlorobutadiene	3,300 U	3,300 U	3,300 U
Hexachloroethane	3,300 U	3,300 U	3,300 U
Hexachlorocyclopentadiene	3,300 U	3,300 U	3,300 U
Indeno(1,2,3-cd)pyrene	3,300 U	3,300 U	3,300 U
Isophorone	3,300 U	3,300 U	3,300 U
2-Methylnaphthalene	3,300 U	3,300 U	3,300 U
2-Methylphenol	3,300 U	3,300 U	3,300 U
4-Methylphenol	3,300 U	3,300 U	3,300 U
Naphthalene	3,300 U	3,300 U	3,300 U
2-Nitroaniline	8,000 U	8,000 U	8,000 U
3-Nitroaniline	8,000 U	8,000 U	8,000 U
4-Nitroaniline	8,000 U	8,000 U	8,000 U
Nitrobenzene	3,300 U	3,300 U	3,300 U
2-Nitrophenol	3,300 U	3,300 U	3,300 U
4-Nitrophenol	8,000 U	8,000 U	8,000 U
N-Nitrosodiphenylamine (1)	3,300 U	3,300 U	3,300 U
N-Nitroso-di-n-propylamine	3,300 U	3,300 U	3,300 U
Di-n-octyl phthalate	3,300 U	3,300 U	3,300 U
Pentachlorophenol	8,000 U	8,000 U	8,000 U
Phenanthrene	3,300 U	3,300 U	3,300 U
Phenol	3,300 U	3,300 U	3,300 U
Pyrene	3,300 U	3,300 U	3,300 U
Pyridine	3,300 U	3,300 U	3,300 U
1,2.4-Trichlorobenzene	3,300 U	3,300 U	3,300 U
2,4,5-Trichlorophenol	8,000 U	8,000 U	8,000 U
2,4,6-Trichlorphenol	3,300 U	3,300 U	3,300 U
Location No.:	017-025BH 5 - 5.5	017-028BH 1.5 - 2	017-028BH 5 - 5.5
Sample Date:	5/17/95	5/17/95	5/17/95
Lab Sample No.:	9505673-08	9505673-12	9505673-13
Metals Matrix:	Soil	Soil	Soil
Mercury, Total	0. <b>1</b> U	0.1 U	0.1 U

Table J.6
Analytical Results of SVOCs and Metals in Soil Samples at Site No. 17
Minnesota Air National Guard Base

Location No.:	017-029BH 1.5 - 2	017-029BH Duplicate	017-030BH 1.5 - 2
Sample Date:	5/19/95	5/19/95	5/19/95
Lab Sample No.:	9505766-04	9505766-11	9505766-05
SVOCs Matrix:	Soil	Soil	Soil
Acenaphthene	330 U	330 U	330 U
Acenaphthylene	330 U	330 U	330 U
Aniline	330 U	330 U	330 U
Anthracene	330 U	330 U	330 U
Benzo(a)anthracene	330 U	330 U	640
Benzo(b)fluoranthene	330 U	330 U	880
Benzo(k)fluoranthene	330 U	330 U	380
Benzo(a)pyrene	330 U	330 U	640
Benzoic acid	1,600 U	1,600 U	1,600 U
Benzo(g,h,i)perylene	330 U	330 U	440
Benzyl alcohol	330 U	330 U	330 U
4-Bromophenylphenyl ether	330 U	330 U	330 U
Butvlbenzylphthalate	330 U	330 U	330 U
Di-n-butyl phthalate	330 U	330 U	330 U
Carbazole	330 U	330 U	330 U
4-Chloroaniline	330 U	330 U	330 U
Bis(2-chloroethoxy)methane	330 U	330 U	330 U
Bis(2-chloroethyl)ether	330 U	330 U	330 U
Bis(2-chloroisopropyl)ether	330 U	330 U	330 U
4-Chloro-3-methylphenol	330 U	330 U	330 U
2-Chloronaphthalene	330 U	330 U	330 U
2-Chlorophenol	330 U	330 U	330 U
4-Chlorophenylphenyl ether	330 U	330 U	330 U
Chrysene	330 U	330 U	720
Dibenz(a,h)anthracene	330 U	330 U	330 U
Dibenzofuran	330 U	330 U	330 U
1,2-Dichlorobenzene	330 U	330 U	330 U
1,3-Dichlorobenzene	330 U	330 U	330 U
1,4-Dichlorobenzene	. 330 U	330 U	330 U
3,3'-Dichlorobenzidine	330 U	330 U	330 U
2,4-Dichlorophenol	330 U	330 U	330 U
Diethylphthalate	330 U	330 U	330 U
2,4-Dimethylphenol	330 U	330 U	330 U
Dimethyl Phthalate	330 U	330 U	330 U
4.6-Dinitro-2-methylphenol	800 U	800 U	800 U
2.4-Dinitrophenol	800 U	800 U	800 U

Table J.6
Analytical Results of SVOCs and Metals in Soil Samples at Site No. 17
Minnesota Air National Guard Base

Location No.:	017-029BH 1.5 - 2	017-029BH Duplicate	017-030BH 1.5 - 2
Sample Date:	1	5/19/95	5/19/95
Lab Sample No.:	l .	9505766-11	9505766-05
SVOCs Matrix:	The state of the s	Soil	Soil
2,4-Dinitrotoluene	330 U	330 U	330 U
2,6-Dinitrotoluene	330 U	330 U	330 U
1,2-Diphenylhydrazine	330 U	330 U	330 U
Bis(2-ethylhexyl)phthalate	330 U	330 U	330 U
Fluoranthene	330 U	330 U	1,100
Fluorene	330 U	330 U	330 U
Hexachlorobenzene	330 U	330 U	330 U
Hexachlorobutadiene	330 U	330 U	330 U
Hexachloroethane	330 U	330 U	330 U
Hexachlorocyclopentadiene	330 U	330 U	330 U
Indeno(1,2,3-cd)pyrene	330 U	330 U	390
Isophorone	330 U	330 U	330 U
2-Methylnaphthalene	330 U	330 U	330 U
2-Methylphenol	330 U	330 U	330 U
4-Methylphenol	330 U	330 U	330 U
Naphthalene	330 U	330 U	330 U
2-Nitroaniline	800 U	800 U	800 U
3-Nitroaniline	800 U	800 U	800 U
4-Nitroaniline	800 U	800 U	800 U
Nitrobenzene	330 U	330 U	330 U
2-Nitrophenol	330 U	330 U	330 U
4-Nitrophenol	800 U	800 U	800 U
N-Nitrosodiphenylamine (1)	330 U	330 U	330 U
N-Nitroso-di-n-propylamine	330 U	330 U	330 U
Di-n-octyl phthalate	330 U	330 U	330 U
Pentachlorophenol	800 U	800 U	800 U
Phenanthrene	330 U	330 U	1,000
Phenol	330 U	330 U	330 U
Pyrene	330 U	330 U	1,800
Pyridine	330 U	330 U	330 U
1,2,4-Trichlorobenzene	330 U	330 U	330 U
2,4,5-Trichlorophenol	800 U	800 U	800 U
2.4.6-Trichlorphenol	330 U	330 U	330 U
Location No.:	<ul> <li>S. S. Salación De Carte de</li></ul>	017-029BH Duplicate	017-030BH 1.5 - 2
Sample Date:	♣ 2	5/19/95	5/19/95
Lab Sample No.:	<ul> <li>A State from the control of the contro</li></ul>	9505766-11	9505766-05
Metals Matrix:		Soil	Soil
Mercury, Total	0.4 U	0.4 U	0.4 U

Table J.6 Analytical Results of SVOCs and Metals in Soil Samples at Site No. 17 Minnesota Air National Guard Base

#### Duluth, Minnesota

Location No.:	017-031BH 1.5 - 2	017-031BH 5 - 5.5	017-032BH 1.5 - 2
Sample Date:	5/19/95	5/19/95	5/19/95
Lab Sample No.:	9505766-07	9505766-06	9505766-08
SVOCs Matrix:	Soil	Soil	Soil
Acenaphthene	660 U	990 U	660 U
Acenaphthylene	660 U	990 U	660 U
Aniline	660 U	990 U	660 U
Anthracene	660 U	990 U	660 U
Benzo(a)anthracene	660 U	990 U	660 U
Benzo(b)fluoranthene	660 U	990 U	660 U
Benzo(k)fluoranthene	660 U	990 U	660 U
Benzo(a)pyrene	660 U	990 U	660 U
Benzoic acid	3,200 U	4,800 U	3,200 U
Benzo(g,h,i)perylene	660 U	990 U	660 U
Benzyl alcohol	660 U	990 U	660 U
4-Bromophenylphenyl ether	660 U	990 U	660 U
Butylbenzylphthalate	660 U	990 U	660 U
Di-n-butyl phthalate	660 U	990 U	660 U
Carbazole	660 U	990 U	660 U
4-Chloroaniline	660 U	990 U	660 U
Bis(2-chloroethoxy)methane	660 U	990 U	660 U
Bis(2-chloroethyl)ether	660 U	990 U	660 U
Bis(2-chloroisopropyl)ether	660 U	990 U	660 U
4-Chloro-3-methylphenol	660 U	990 U	660 U
2-Chloronaphthalene	660 U	990 U	660 U
2-Chlorophenol	660 U	990 U	660 U
4-Chlorophenylphenyl ether	660 U	990 U	660 U
Chrysene	660 U	990 U	660 U
Dibenz(a,h)anthracene	660 U	990 U	660 U
Dibenzofuran	660 U	990 U	660 U
1,2-Dichlorobenzene	660 U	990 U	660 U
1,3-Dichlorobenzene	660 U	990 U	660 U
1,4-Dichlorobenzene	660 U	990 U	660 U
3.3'-Dichlorobenzidine	660 U	990 U	660 U
2,4-Dichlorophenol	660 U	990 U	660 U
Diethylphthalate	660 U	990 U	660 U
2,4-Dimethylphenol	660 U	990 U	660 U
Dimethyl Phthalate	660 U	990 U	660 U
4,6-Dinitro-2-methylphenol	1,600 U	2,400 U	1,600 U
2,4-Dinitrophenol	1.600 U	2,400 U	1.600 U

Table J.6
Analytical Results of SVOCs and Metals in Soil Samples at Site No. 17
Minnesota Air National Guard Base

#### Duluth, Minnesota

Location No.:	017-031BH 1.5 - 2	017-031BH 5 - 5.5	017-032BH 1.5 - 2
Sample Date:	5/19/95	5/19/95	5/19/95
Lab Sample No.:	9505766-07	9505766-06	9505766-08
SVOCs Matrix:	Soil	Soil	Soil
2.4-Dinitrotoluene	660 U	990 U	660 U
2,6-Dinitrotoluene	660 U	990 U	660 U
1,2-Diphenylhydrazine	660 U	990 U	660 U
Bis(2-ethylhexyl)phthalate	660 U	990 U	660 U
Fluoranthene	660 U	990 U	800
Fluorene	660 U	990 U	660 U
Hexachlorobenzene	660 U	990 U	660 U
Hexachlorobutadiene	660 U	990 U	660 U
Hexachloroethane	660 U	990 U	660 U
Hexachlorocyclopentadiene	660 U	990 U	660 U
Indeno(1,2,3-cd)pyrene	660 U	990 U	660 U
Isophorone	660 U	990 U	660 U
2-Methylnaphthalene	660 U	990 U	660 U
2-Methylphenol	660 U	990 U	660 U
4-Methylphenol	660 U	990 U	660 U
Naphthalene	660 U	990 U	660 U
2-Nitroaniline	1,600 U	2,400 U	1,600 U
3-Nitroaniline	1,600 U	2,400 U	1.600 U
4-Nitroaniline	1,600 U	2,400 U	1.600 U
Nitrobenzene	660 U	990 U	660 U
2-Nitrophenol	660 U	990 U	660 U
4-Nitrophenol	1,600 U	2,400 U	1,600 U
N-Nitrosodiphenylamine (1)	660 U	990 U	660 U
N-Nitroso-di-n-propylamine	660 U	990 U	660 U
Di-n-octyl phthalate	660 U	990 U	660 U
Pentachlorophenol	1,600 U	2,400 U	1,600 U
Phenanthrene	660 U	990 U	1,400
Phenol	660 U	990 U	660 U
Pyrene	790	990 U	1,600
Pyridine	660 U	990 U	660 U
1,2,4-Trichlorobenzene	660 U	990 U	660 U
2,4,5-Trichlorophenol	1,600 U	2.400 U	1,600 U
2.4,6-Trichlorphenol	660 U	990 U	660 U
Location No.:	017-031BH 1.5 - 2	017-031BH 5 - 5.5	017-032BH 1.5 - 2
Sample Date:	5/19/95	5/19/95	5/19/95
Lab Sample No.:	9505766-07	9505766-06	9505766-08
Metals Matrix:	Soil	Soil	Soil
Mercury, Total	0.4 U	0.4 U	0.4 U

# Table J.7 Analytical Results of TPH in Soil Samples at Site No. 17 Minnesota Air National Guard Base Duluth, Minnesota

	Duluth, Mill		
	Location No.:	017-022BH 2 - 2.5	017-023BH 2 - 2.5
	Sample Date:	5/17/95	5/17/95
	Lab Sample No.:	2575-95LS	2576-95LS
TPH (mg/kg)	Matrix:	Soil	Soil
Gasoline Range Organics		5.0 U	5.0 U
Diesel Range Organics		4.0 U	4.0 U
	Location No.:	017-023BH 5.5 - 6	017-024BH 1.5 - 2
	Sample Date:	5/17/95	5/17/95
	Lab Sample No.:	2577-95LS	2578-95LS
TPH (mg/kg)	Matrix:	Soil	Soil
Gasoline Range Organics		5.0 U	5.0 U
Diesel Range Organics		4.0 U	13.4
ka kirilai kirika kanish da kati	Location No.:	017-024BH 5 - 5.5	017-025BH 1.5 - 2
	Sample Date:	5/17/95	5/17/95
	Lab Sample No.:	2579-95LS	2580-95LS
TPH (mg/kg)	Matrix:	Soil	Soil
Gasoline Range Organics		5.0 U	5.0 U
Diesel Range Organics	!	70.6	144
	Location No.:	017-025BH 5.5 - 6	017-031BH 2 - 2.5
	Sample Date:	5/17/95	5/19/95
	Lab Sample No.:	2581~95LS	2621-95LS
TPH (mg/kg)	Matrix:	Soil	Soil
Gasoline Range Organics		5.0 U	5.0 U
Diesel Range Organics		9.92	19.3
	Location No.:	017-031BH 2 - 2.5	017-031BH 5.5 - 6
	Sample Date:	5/19/95	5/19/95
	Lab Sample No.:	2622-95LS	2623-95LS
TPH (mg/kg)	Matrix:	Soil	Soil
Gasoline Range Organics		5.0 U	5.0 U
Diesel Range Organics		4.02	41.2
	Location No.:	017-032BH 2 - 2.5	017-021BH 2 - 2.5
	Sample Date:	5/19/95	5/19/95
	Lab Sample No.:	2624-95LS	2625-95LS
TPH (mg/kg)	Matrix:	Soil	Soil
Gasoline Range Organics		5.0 U	5.0 U
Diesel Range Organics		4.0 U	4.0 U
	Location No.:	017-021BH 5.5 - 6	017-030BH 2 - 2.5
	Sample Date:	5/19/95	5/19/95
	Lab Sample No.:	2626-95LS	2627-95LS
TPH (mg/kg)	Matrix:	Soil	Soil
Gasoline Range Organics		5.0 U	5.0 U
Diesel Range Organics		4.0 U	189
	Location No.:	017-028BH 2 - 2.5	017-028BH 5.5 - 6
	Sample Date:	5/17/95	5/17/95
	Lab Sample No.:	2582-95LS	2583-95LS
TPH (mg/kg)	Matrix:	Soil	Soil
Gasoline Range Organics		5.0 U	5.0 U
Diesel Range Organics		4.0 U	4.0 U

# Table J.7 Analytical Results of TPH in Soil Samples at Site No. 17 Minnesota Air National Guard Base Duluth, Minnesota

	Location No.:	017-029BH 2 - 2.5	017-029BH 2 - 2.5
	Sample Date:	5/19/95	5/19/95
	Lab Sample No.:	2628-95LS	2629-95LS
TPH (mg/kg)	Matrix:	Soil	Soil
Gasoline Range Organics		5.0 U	5.0 U
Diesel Range Organics		4.2	5.6

### Table J.8 Analytical Results of TPH in Soil Samples at Site No. 21 Minnesota Air National Guard Base

#### Duluth, Minnesota

Location No.:	021-026BH 2 - 2.5	021-026BH 9 - 9.5
Sample Date:	5/16/95	5/16/95
Lab Sample No.:	2537-95LS	2538-95LS
Matrix:	Soil	Soil
	5.0 U	5.0 U
	88.00	8.70
Location No.:	021-027BH 2 - 2.5	021-027BH 8 - 9
Sample Date:	5/16/95	5/16/95
Lab Sample No.:	2539-95LS	2540-95LS
Matrix:	Soil	Soil
	5.0 U	5.0 U
	27.70	29.10
Location No.:	021-027BH 9 - 10	021-028BH 2 - 2.5
Sample Date:	5/16/95	5/16/95
Lab Sample No.:	2541-95LS	2542-95LS
Matrix:	Soil	Soil
	5.0 U	5.0 U
		4.0 U
Location No.:	021-028BH 1.5 - 2	021-028BH 5.5 - 6
Sample Date:	5/16/95	5/16/95
Lab Sample No.:	2543-95LS	2544-95LS
Matrix:	Soil	Soil
	5.0 U	5.0 U
	0.00	6.61
	Lab Sample No.: Matrix:  Location No.: Sample Date: Lab Sample No.: Matrix:  Location No.: Sample Date: Lab Sample No.: Matrix:  Location No.: Sample Date: Lab Sample Date: Lab Sample Date: Lab Sample No.:	Sample Date: Lab Sample No.: Matrix: Soil



#### APPENDIX K

ANALYTICAL RESULTS OF THE QUALITY ASSURANCE/ QUALITY CONTROL SAMPLES THIS PAGE INTENTIONALLY LEFT BLANK

#### SECTION K.1 INTRODUCTION

Quality Assurance/Quality Control (QA/QC) samples were gathered during soil and water sampling for laboratory analysis by Southern Petroleum Laboratory (SPL) of Houston, Texas. The analytical results are presented in Tables K.1 through K.12.

THIS PAGE INTENTIONALLY LEFT BLANK

Table K.1
Analytical Results of Trip Blank Samples for Sites 17, 18, and 21
Minnesota Air National Guard Base
Duluth, Minnesota

Location No.: 021 Sample Date: 7,	021-TB01 7/7/94	021-TB 02 7/13/94	021-TB 03 7/14/94	021-TB 03 7/15/94	018-TB 01 7/25/94	Sites 21 10/4/94	Sites 18 & 21 10/5/94	Sites 17, 18, & 21 10/6/94
Lab Sample No.:   940	9407443-13	9407473-02	9407567-14	9407612-06	9407971-05	9410146-08	9410180-10	9410269-10
h	Water	Water	Water	Water	Water	Water	Water	Water
	100	100	100	100	100	10U	100	100
	su	SU	2U	SU	SU	SU	SU	su
	su	SU	50	SU	SU	ns	su.	su
	5U	SU.	SU.	SU.	SU	SU	20	SU
	10U	10U	100	100	10U	10U	100	10U
	20U	20U	20U	20U	20U	20U	20U	20U
	su	SU.	SU	SU	SU	50	SU	su
	5U	SU	SU	SU	SU	20	SU	SU.
	5U	50	su.	5U	SU	os	SU	SU
	10U	100	100	100	10U	10U	10U	100
	10U	10U	10U	10U	100	100	10U	10U
	su	SU	SU	SU	SU	50	SU	SU
	100	100	100	100	101	100	10U	100
	su	SU	SU	SU	SU	SU	SU	SU
	su	SU	2U	SU	SU	50	SU	SU
	5U	2U	SU	SU	SU	SU	ns l	SU.
	su	50	SU	SU	SU	SU	SU	SU
	su.	SU	SU	SU	SU	SU	SU	20
	su	5U	SU	SU	SU	SU	SU	SU
	su	50	SU	SU	SU	SU.	SU	SU
	su	SU	2U	SU	SU	SU	SU	2U
	su	SU	SU	SU	SU	SU	su	2C
	10U	100	100	100	10U	10U	100	10U
	su	5U	50	SU	SU	SU.	SU	SU
	10U	100	100	100	100	10U	10U	100
	5U	SU.	SU	SU	SU	SU	SU	SU.
	SU	SU	SU	SU	SU	SU.	su	SU
	SU.	SU.	SU	SU	SU	SU	SU	2U
	5U	SU	50	SU	SU	20	SU.	SU
	5U	5U	SU	SU	SU	50	50	SU.
	5U	SU	SU	SU	SU	SU	2U	SU
	5U	5U	SU	SU	SU	2U	2U	SU
	su.	50	SU.	2U	SU	SU	SU	SU
	10U	10U	100	100	100	10U	100	100
	10U	100	100	100	10U	10U	100	100
	SU	2O	SU	5U	SU	5U	5U	5U

U - Indicates compound analyzed for but not detected. VOCs - Volatile organic compounds

Table K.2
Analytical Results of Field Blank Samples for Sites 17, 18, and 21
Minnesota Air National Guard Base
Duluth, Minnesota

Location No.:	DANGB-FB01	DANGB-FB02
Sample Date:	10/6/94	10/6/94
Lab Sample No.:	9410269-08	9410269-09
VOCs (ug/L) Matrix	Water	Water
Acetone	10U	10U
Benzene	50	SU.
Bromodichloromethane	SU	SU
Bromoform	SU	5U
Bromomethane	100	10U
2-Butanone	22	20U
Carbon Disulfide	SU.	SU.
Carbon Tetrachloride	5U	SU.
Chlorobenzene	50	SU.
Chloroethane	10U	10U
2-Chloroethylvinylether	100	10U
Chloroform	ns .	12
Chloromethane	10U	10U
Dibromochloromethane	SU	2U
1,1-Dichloroethane	SU	SU
1,1-Dichloroethene	SU	2U
1,2-Dichloroethane	SU	5U
total -1,2-Dichloroethene	SU	SU
1,2-Dichloropropane	SU.	SU.
cis-1,3-Dichloropropene	SU	SU
trans-1,3-Dichloropropene	SU	20
Ethylbenzene	5U	ns l
2-Hexanone	10U	10U
Methylene Chloride	50	5U
4-Methyl-2-Pentanone	10U	100
Styrene	SU	SU.
1,1,2,2-Tetrachloroethane	SU	SU.
Tetrachloroethene	5U	50
Toluene	SU	SU
1,1,1-Trichloroethane	SU	SU
1,1,2-Trichloroethane	SU	SU
Trichloroethene	SU	5U
Trichlorofluoromethane	SU	SU.
Vinyl Acetate	10U	100
Vinyl Chloride	100	10U
Aylenes (total)	20	30

Table K.2
Analytical Results of Field Blank Samples for Sites 17, 18, and 21
Minnesota Air National Guard Base
Duluth, Minnesota

Location No.:	DANGB-FB01 DANGB-FB02	DANGB-FBC
Sample Date:	. 10/6/94	10/6/94
Lab Sample No.:	9410269-08	9410269-09
SVOCs (ug/L) Matrix	Water	Water
Acenaphthene	50	20
Acenaphthylene	2U	SU
Aniline	SU	SU
Anthracene	5U	SU
Benzo (a) Anthracene	2U	SU
Benzo (b) Fluoranthene	2U	SU
Benzo (k) Fluoranthene	SU	SU
Benzo (a) Pyrene	SU	SU
Benzoic Acid	25U	25U
Benzo(g,h,i)Perylene	SU	SU
Benzyl alcohol	SU	SU
4-Bromophenylphenyl ether	su	20
Butylbenzylphthalate	5U	SU
di-n-Butyl phthalate	SU	SU.
Carbazole	SU	SU
4-Chloroaniline	SU	SU
bis(2-Chloroethoxy)Methane	SU	SU
bis(2-Chloroethyl)Ether	SU	SU
bis(2-Chloroisopropyl)Ether	50	90
4-Chloro-3-Methylphenol	SU	2U
2-Chloronaphthalene	SU	DS.
2-Chlorophenol	SU	SU.
4-Chlorophenylphenyl ether	su	SU
Chrysene	SU	SU
Dibenz(a,h)Anthracene	50	ns
Dibenzofuran	50	SU
1,2 -Dichlorobenzene	SU	SU
1,3-Dichlorobenzene	SU	SU
1,4-Dichlorobenzene	SU	SU
3,3'-Dichlorobenzidine	5U	5U
2,4-Dichlorophenol	SU	SU
Diethylphthalate	SU	SU
2,4-Dimethylphenol	SU	SU
Dimethyl Phthalate	SU	211

DANGB - Duluth Air National Guard Base ug/L - micrograms per fiter mg/L - miligrams per liter

Table K.2

Analytical Results of Field Blank Samples for Sites 17, 18, and 21

Minnesota Air National Guard Base

Duluth, Minnesota

,是不是不是,这种人的人,我们也是一种情况,这种情况是一种情况,但是一个人的人,是一个人的人的,也是是有人的人,也可以是**是一个人的人的**,也可以是一个人的人,也可以是一个人的人的,也可以是一个人的人,

Location No.: DANGB-FB01 DANGB-FB02	DANGB-FB01	DANGB-FB02
Sample Date: Lab Sample No.:	10/6/94 9410269-08	10/6/94 9410269-09
SVOCs (ug/L) Matrix	Water	Water
4,6-Dinitro-2-Methylphenol	25U	25U
2,4-Dinitrophenol	25U	25U
2,4-Dinitrotoluene	SU	50
2,6-Dinitrotoluene	2O	SU.
1,2-Diphenylhydrazine	SU.	SU.
bis (2-Ethylhexyl) Phthalate	SU.	SU
Fluoranthene	20	2C
Fluorene	50	SU.
Hexachlorobenzene	SU	SU.
Hexachlorobutadiene	SU	2U
Hexachloroethane	SU.	SU
Hexachlorocyclopentadiene	SU	5U
Indeno (1,2,3-cd) Pyrene	SU	SU.
Isophorone	SU	5U
2-Methylnaphthalene	5U	SU
2-Methylphenol	50	SU.
4-Methylphenol	5U	5U
Naphthalene	su	50
2-Nitroaniline	25U	25U
3-Nitroaniline	25U	25U
4-Nitroaniline	25U	25U
Nitrobenzene	SU.	SU
2-Nitrophenol	25U	25U
4-Nitrophenol	25U	25U
N-Nitrosodiphenylamine (1)	50	50
N-Nitroso-Di-n-Propylamine	SU	SU.
Di-n-Octyl Phthalate	SU	SU.
Pentachlorophenol	25U	25U
Phenanthrene	5U	SU
Phenol	SU	SU
Pyrene	SU	5U
Pyridine	SU.	SU.
1,2,4-Trichlorobenzene	SU	SU.
2,4,5-Trichlorophenol	100	100
2,4,6-Trichlorophenol	SU.	SU
TPH (mg/L)	0.5U	0.5U

Table K.2
Analytical Results of Field Blank Samples for Sites 17, 18, and 21
Minnesota Air National Guard Base
Duluth, Minnesota

Location No.:	DANGB-FB01	DANGB-FB02
Sample Date:	10/6/94	10/6/94
Lab Sample No.:	9410269-08	9410269-09
Pesticides/PCBs (ug/L) Matrix	Water	Water
a-BHC	0.02U	0.02U
b-BHC	0.05U	0.05U
d-BHC	0.05U	0.05U
g-BHC	0.03U	0.03U
Heptachlor	0.03U	0.03U
Aldrin	0.02U	0.02U
Heptachlor Epoxide	0.05U	0.05U
Endosulfan I	0.05U	0.05U
Dieldrin	U10.0	0.01U
. Endrin	0.04U	0.04U
Endosulfan II	0.03U	0.03U
4,4'-DDT	0.07U	0.07U
Endrin Aldehyde	0.10U	0.10U
Methoxychlor	0.05U	0.05U
a-Chlordane	0.05U	0.05U
g-Chlordane	0.01U	0.010
4,4'-DDE	0.02U	0.02U
4,4'-DDD	0.10U	0.10U
Endosulfan Sulfate	0.10U	0.10U
Endrin Ketone	0.10U	0.10U
Toxaphene	1.0U	1.00
Chlordane (technical)	0.05U	0.05U
PCB-1016	0.5U	0.5U
PCB-1221	0.5U	0.5U
PCB-1232	0.5U	0.5U
PCB-1242	0.5U	0.5U
PCB-1248	0.5U	0.5U
PCB-1254	0.5U	0.5U
PCB-1260	0.5U	0.5U

Table K.3
Analytical Results of Field Blank Sample for Site 17
Minnesota Air National Guard Base
Duluth, Minnesota

Location No.:	017-FB01
Sample Date:	7/25/94
SVOCs (ug/L) Matrix	9407971-06 Weter
	SU
Acenaphthylene	SU
Aniline	SU
Anthracene	SU
Benzo (a) Anthracene	SU
Benzo (b) Fluoranthene	SU
Benzo (k) Fluoranthene	SU
Benzo (a) Pyrene	SU
Benzoic Acid	25U
Benzo(g,h,i)Perylene	SU
Benzyl alcohol	SU
4-Bromophenylphenyl ether	50
Butylbenzylphthalate	SU
di-n-Butyl phthalate	SU
Carbazole	50
4-Chloroaniline	SU.
bis(2-Chloroethoxy)Methane	SU
bis(2-Chloroethyl)Ether	SU
bis(2-Chloroisopropyl)Ether	SU
4-Chloro-3-Methylphenol	SU
2-Chloronaphthalene	SU
2-Chlorophenol	SU
4-Chlorophenylphenyl ether	5U
Chrysene	SU
Dibenz(a,h)Anthracene	SU
Dibenzofuran	SU
1,2 -Dichlorobenzene	5U
1,3-Dichlorobenzene	SU
1,4-Dichlorobenzene	SU.
3,3'-Dichlorobenzidine	SU
2,4-Dichlorophenol	SU
Diethylphthalate	50
2,4-Dimethylphenol	SU
Dimethyl Phthalate	SU.
4,6-Dinitro-2-Methylphenol	25U

U - Indicates compound analyzed for but not detected. SVOCs - Semivolatile organic compounds TPH - Total petroleum hydrocarbons

Table K.3
Analytical Results of Field Blank Sample for Site 17
Minnesota Air National Guard Base
Duluth, Minnesota

Location No.:	
Sample Date:  Lab Sample No.:	9407971-06
SVOCs (ug/L) Matrix	1200
2,4-Dinitrophenol	25U
2,4-Dinitrotoluene	su.
2,6-Dinitrotoluene	ns
1,2-Diphenylhydrazine	2U
bis (2-Ethylhexyl) Phthalate	SU
Fluoranthene	SU
Fluorene	SU
Hexachlorobenzene	su
Hexachlorobutadiene	SU
Hexachloroethane	5U
Hexachlorocyclopentadiene	SU
Indeno (1,2,3-cd) Pyrene	SU
Isophorone	SU
2-Methylnaphthalene	SU
2-Methylphenol	SU
4-Methylphenol	10U
Naphthalene	SU
2-Nitroaniline	25U
3-Nitroaniline	25U
4-Nitroaniline	25U
Nitrobenzene	SU
2-Nitrophenol	25U
4-Nitrophenol	25U
N-Nitrosodiphenylamine (1)	SU
N-Nitroso-Di-n-Propylamine	SU
Di-n-Octyl Phthalate	SU
Pentachlorophenol	25U
Phenanthrene	50
Phenol	SU
Pyrciic	SU
Pyridine	5U
1,2,4-Trichlorobenzene	SU
2,4,5-Trichlorophenol	100
2,4,6-Trichlorophenol	SU
TPH (mg/L)	0.5U

U - Indicates compound analyzed for but not detected. SVOCs - Semivolatife organic compounds TPH - Total petroleum hydrocarbons

FB - Field Blank ug/L - micrograms per liter mg/L - milligrams per liter

Table K.4
Analytical Results of Field Blank Samples for Site 18
Minnesota Air National Guard Base
Duluth, Minnesota

Sample Date:	7/25/94
VOCs (1007.) Matrix	9407971-03 Water
	10U
Benzene	SU
Bromodichloromethane	SU
Bromoform	SU
Bromomethane	100
2-Butanone	20U
Carbon Disulfide	5U
Carbon Tetrachloride	50
Chlorobenzene	50
Chloroethane	100
2-Chloroethylvinylether	100
Chloroform	SU.
Chloromethane	10U
Dibromochloromethane	50
1,1-Dichloroethane	50
1,1-Dichloroethene	SU
1,2-Dichloroethane	SU
total -1,2-Dichloroethene	SU
1,2-Dichloropropane	SU
cis-1,3-Dichloropropene	su.
trans-1,3-Dichloropropene	50
Ethylbenzene	SU
2-Hexanone	100
Methylene Chloride	su
4-Methyl-2-Pentanone	10U
Styrene	SU
1,1,2,2-Tetrachloroethane	SU
Tetrachloroethene	SU
Toluene	5U
1,1,1-Trichloroethane	SU
1,1,2-Trichloroethane	5U
Trichloroethene	SU
Trichlorofluoromethane	SU
Vinyl Acetate	10U
Vinyl Chloride	100
Xvlenes (total)	

Table K.5
Analytical Results of Field Blank Sample for Site 21
Minnesota Air National Guard Base
Duluth, Minnesota

. Location No.:	021-FB01
Sample Date:	7/22/94
Lab Sample No:	4907999-01
Metals (mg/L) Matrix	Water
Aluminum	0.09U
Antimony	0.01U
Arsenic	0.01U
Beryllium	0.004U
Cadmium	0.0001U
Chromium	0.002U
Copper	0.01U
Lead	0.003U
Mercury	0.0002U
Nickel	0.002U
Selenium	0.005U
Silver	N/A
Thallium	0.004U
Zinc	0.02U

U - Indicates compound analyzed for but not detected. FB - Field Blank

Table K.6
Analytical Results of Equipment Rinseate Blank Samples for Site 17
Minnesota Air National Guard Base
Duluth, Minnesota

Location No.:	017-RB 01	017-RB 02	017-RB 03
Sample Date:	7/18/94	7/19/94	7/20/94
Lab Sample No.:	9407681-12	9407703-01	9407813-01
SVOCs (ug/L) Matrix	Water	Water	Water
Acenaphthene	50	SU	SU
Acenaphthylene	SU	5U	5U
Aniline	5U	SU	SU
Anthracene	50	SU	5U
Benzo (a) Anthracene	2U	SU	SU
Benzo (b) Fluoranthene	SU	SU	SU
Benzo (k) Fluoranthene	SU	SU	SU
Benzo (a) Pyrene	5U	SU	5U
Benzoic Acid	25U	25U	25U
Benzo(g,h,i)Perylene	SU	SU	SU
Benzyl alcohol	50	su	SU
4-Bromophenylphenyl ether	SU	SU	5U
Butylbenzylphthalate	SU	SU.	su.
di-n-Butyl phthalate	50	SU	SU.
Carbazole	50	50	SU.
4-Chloroaniline	2U	SU	2C
bis(2-Chloroethoxy)Methane	5U	SU.	SU.
bis(2-Chloroethyl)Ether	SU	SU	SU
bis(2-Chloroisopropyl)Ether	SU	SU	SU
4-Chloro-3-Methylphenol	20	20	20
2-Chloronaphthalene	SU	SU	SU.
2-Chlorophenol	50	SU	SU
4-Chlorophenylphenyl ether	50	SU	SU.
Chrysene	2O	50	SU S
Dibenz(a,h)Anthracene	20	SU.	SU
Dibenzofuran	20	SU	SU.
1,2 -Dichlorobenzene	SU	SU	SU
1,3-Dichlorobenzene	SU	SU	5U
1,4-Dichlorobenzene	50	SU	SU
3,3'-Dichlorobenzidine	su	50	SU
2,4-Dichlorophenol	50	SU	5U
Diethylphthalate	50	SU.	SU
2,4-Dimethylphenol	SU	SU	50
Dimethyl Phthalate	5U	SU	5U

Table K.6
Analytical Results of Equipment Rinseate Blank Samples for Site 17
Minnesota Air National Guard Base
Duluth, Minnesota

Location No.:	017-RB 01	017-RB 02	017-RB 03
Sample Date:	7/18/94	7/19/94	7/20/94
Lab Sample No.:	Š	9407703-01	9407813-01
SVOCs (ug/L) Matrix	Water	Water	Water
4,6-Dinitro-2-Methylphenol	25U	25U	25U
2,4-Dinitrophenol	25U	25U	25U
2,4-Dinitrotoluene	SU	su	SU
2,6-Dinitrotoluene	5U	SU	SU
1,2-Diphenylhydrazine	50	SU	SU
bis (2-Ethylhexyl) Phthalate	5U	SU	SU
Fluoranthene	5U	SU	SU
Fluorene	SU	50	SU
Hexachlorobenzene	5U	SU	5U
Hexachlorobutadiene	su	SU	SU.
Hexachloroethane	SU	SU	SU
Hexachlorocyclopentadiene	5U	SU	SU
Indeno (1,2,3-cd) Pyrene	SU	SU	SU
Isophorone	SU	SU	SU
2-Methylnaphthalene	SU	SU	SU.
2-Methylphenol	SU	SU	SU
4-Methylphenol	SU	50	SU
Naphthalene	SU	SU	SU
2-Nitroaniline	25U	25U	25U
3-Nitroaniline	25U	25U	25U
4-Nitroaniline	25U	25U	25U
Nitrobenzene	SU	SU	SU
2-Nitrophenol	SU	su	SU
4-Nitrophenol	25U	25U	25U
N-Nitrosodiphenylamine (1)	SU	50	50
N-Nitroso-Di-n-Propylamine	SU	SU.	SU
Di-n-Octyl Phthalate	5U	SU.	50
Pentachlorophenol	25U	25U	25U
Phenanthrene	SU.	SU	SU
Phenol	5U	SU	5U
Pyrene	SU.	SU	SU
Pyridine	SU	SU.	SU
1,2,4-Trichlorobenzene	50	SU	SU
2,4,5-Trichlorophenol	10U	100	10U
2,4,6-Trichlorophenol	SU	SU.	SU.
TPH (mg/L)	0.5U	0.50	0.5U

Table K.7 Analytical Results of Equipment Rinseate Blank Samples for Site 18 Minnesota Air National Guard Base Duluth, Minnesota

Location No.:	018-RB 01	018-RB 02
Sample Date:	7/25/94	10/5/94
Lab Sample No.:	9407971-04	9410180-07
VOCs (ug/L) Matrix	Water	Water
Acetone	100	10U
Benzene	SU	SU
Bromodichloromethane	SU	SU.
Bromoform	SU	SU.
Bromomethane	100	100
2-Butanone	20U	20U
Carbon Disulfide	SU	ns su
Carbon Tetrachloride	SU	50
Chlorobenzene	SU	SU
Chloroethane	100	10U
2-Chloroethylvinylether	100	100
Chloroform	SU	SU
Chloromethane	100	100
Dibromochloromethane	SU.	SU
1,1-Dichloroethane	SU	ns e
1,1-Dichloroethene	SU	ns l
1,2-Dichloroethane	SU	20
total -1,2-Dichloroethene	SU.	50
1,2-Dichloropropane	SU	2O
cis-1,3-Dichloropropene	SU.	50
trans-1,3-Dichloropropene	SU.	ns
Ethylbenzene	SU	50
2-Hexanone	10U	100
Methylene Chloride	SU.	20.
4-Methyl-2-Pentanone	10U	10U
Styrene	SU.	SU
11,1,2,2-Tetrachloroethane	SU	20
Tetrachloroethene	SU.	20
Toluene	SU	2U
1,1,1-Trichloroethane	SU.	50
11,1,2-Trichloroethane	SU	SU.
Trichloroethene	SU	50
Trichlorofluoromethane	SU	SU.
Vinyl Acetate	10U	10U
Vinyl Chloride	100	100
Aylenes (total)	oc .	oc l

Table K.8 Analytical Results of Equipment Rinscate Blank Samples for Site 21 Minnesota Air National Guard Base Duluth, Minnesota

Location No.:	021-RB 01	021-RB 02	021-RB 03	021-RB 04	021-RB 05	021-RB 07	021-RB 08
Sample Date:	7/13/94	7/14/94	7/15/94	7/22/94	7/25/94	10/5/94	10/6/94
VOCs (ug/L) Matrix	Water	Water	Water	Water	Water	Water	Water
	10U	100	100	N/A	10U	100	100
Benzene	SU	SU	5U	N/A	SU	5U	SU
Bromodichloromethane	5U	SU	su	N/A	5U	50	SU
Вготобогт	SU	SU	SU	N/A	SU	50	SU
Bromomethane	100	100	100	N/A	100	10U	100
2-Butanone	20U	20U	20U	N/A	20U	20U	22
Carbon Disulfide	5U	SU	5U	N/A	SU.	5U	SU
Carbon Tetrachloride	SU .	SU	ns '	N/A	SU	SU	SU
Chlorobenzene	SU	SU	SU	N/A	<b>5</b> U	SU	2U
Chloroethane	10U	10U	10U	N/A	100	100	10U
2-Chloroethylvinylether	100	100	10U	N/A	100	100	10U
Chloroform	5U	SU	SU	N/A	SU.	50	SU
Chloromethane	100	10U	100	N/A	100	100	100
Dibromochloromethane	SU	SU	SU.	N/A	50	5U	2U
1,1-Dichloroethane	SU	SU	50	N/A	50	su	SU
1,1-Dichloroethene	SU	<b>2</b> U	50	N/A	SU	5U	SU.
1,2-Dichloroethane	SU	SU	SU	N/A	SU	SU	SU
total -1,2-Dichloroethene	SU	SU.	SU	N/A	SU.	SU	SU.
1,2-Dichloropropane	SU	SU	SU	N/A	SU	SU	SU
cis-1,3-Dichloropropene	5U	SU	SU	N/A	SU	5U	2U
trans-1,3-Dichloropropene	SU	SU	SU	N/A	50	50	SU.
Ethylbenzene	50	SU	SU	V/N	SU	SU	SU
2-Hexanone	100	10U	10U	N/A	100	100	10U
Methylene Chloride	SU	SU	SU	N/A	SU.	SU	SU
4-Methyl-2-Pentanone	10U	10U	10U	N/A	100	101	100
Styrene	SU	50	50	N/A	SU	5U	. SU
1,1,2,2-Tetrachloroethane	SU	SU	50	N/A	SU	SU	SU
Tetrachloroethene	SU	50	50	N/A	SU	SU	2U
Toluene	SU	SU	SU	N/A	SU	50	SU
1,1,1-Trichloroethane	50	5U	su	N/A	SU	SU	SU
1,1,2-Trichloroethane	SU	50	SU	N/A	SU	5U	SU
Trichloroethene	5U	SU	SU	N/A	SU	SU	SU
Trichlorofluoromethane	SU	SU	50	N/A	SU	SU	2U
Vinyl Acetate	100	100	100	N/A	100	100	10U
Vinyl Chloride	10U	10U	100	N/A	10U	100	10U
Xylenes (total)	50	50	su	N/A	SU	50	SU

Table K.8
Analytical Results of Equipment Rinscate Blank Samples for Site 21
Minnesota Air National Guard Base
Duluth, Minnesota

Location No.:	021-RB 01	021-RB 02	021-RB 03	021-RB 04	021-RB 05	021-RB 07
Sample Date:	7/13/94	7/14/94	7/15/94	7/22/94	7/25/94	10/5/94
Lab Sample No.:	9407473-01	9407567-13	9407612-05	9407999-02	9407971-02	9410180-08
SVOCs (ug/L) Matrix	Water	Water	Water	Water	Water	Water
Acenaphthene	SU	SU.	SU	N/A	SU	SU
Acenaphthylene	SU	SU	SU	N/A	50	50
Aniline	50	5U	SU	N/A	SU	SU
Anthracene	20	SU	SU	A/A	SU	SU
Benzo (a) Anthracene	SU	SU	SU	N/A	SU	SU
Benzo (b) Fluoranthene	SU	SU	SU	N/A	SU	SU
Benzo (k) Fluoranthene	<b>2</b> 0	SU	SU	N/A	5U	SU
Benzo (a) Pyrene	SU	SU	SU	N/A	SU	SU
Benzoic Acid	25U	25U	25U	N/A	25U	250
Benzo(g,h,i)Perylene	50	SU.	SU	N/A	SU	SU
Benzyl alcohol	SU	SU	SU	N/A	5U	SU
4-Bromophenylphenyl ether	SU.	SU.	SU.	N/A	SU	SU
Butylbenzylphthalate	SU	SU	SU	N/A	SU	SU
di-n-Butyl phthalate	SU	SU	su	N/A	SU	20
Carbazole	2U	SU	5U	N/A	SU	SU
4-Chloroaniline	SU.	SU	SU	N/A	5U	SU
bis(2-Chloroethoxy)Methane	SU.	SU	SU	N/A	su	SU
bis(2-Chloroethyl)Ether	SU	SU	SU.	N/A	5U	SU
bis(2-Chloroisopropyl)Ether	20	50	SU	N/A	2U	ns
4-Chloro-3-Methylphenol	SU	SU.	SU.	N/A	SU	50
2-Chloronaphthalene	SU	50	SU	N/A	SU	SU
2-Chlorophenol	SU	SU	5U	N/A	SU	5U
4-Chlorophenylphenyl ether	SU	SU	SU	N/A	SU	SU
Chrysene	50	SU	ns .	N/A	SU.	5U
Dibenz(a,h)Anthracene	SU.	50	SU.	N/A	SU	50
Dibenzofuran	SU.	SU	SU	N/A	SU.	SU
1,2 -Dichlorobenzene	SU	SU	2C	A/N	50	20
1,3-Dichlorobenzene	SU	SU	SU	N/A	SU	SU
1,4-Dichlorobenzene	5U	SU.	5U	N/A	SU	su
3,3'-Dichlorobenzidine	SU.	SU.	5U	N/A	SU	20
2,4-Dichlorophenol	5U	SU.	SU	N/A	5U	SU
Diethylphthalate	su.	50	50	N/A	2O	20
2,4-Dimethylphenol	50	5U	SU	N/A	SU.	50
Dimethyl Phthalate	SU	50	SU	N/A	5U	50

Table K.8
Analytical Results of Equipment Rinseate Blank Samples for Site 21
Minnesota Air National Guard Base
Duluth, Minnesota

Location No.	Location No.: 021-RB 01	021-RB 02	021-RB 03	021-RB 04	021-RB 05	021-RB 07
Sample Date:	Selfine.	7/14/94	7/15/94	7/22/94	7/25/94	10/5/94
Lab Sam	3	9407567-13	9407612-05	70-666/046	70-176/006	741018J-03
SVOCs (ug/L) Matrix		Water	Water	Water	Water	Water
4,6-Dinitro-2-Methylphenol	25U	25U	25U	N/A	25U	25U
2,4-Dinitrophenol	25U	25U	25U	N/A	25U	25U
2,4-Dinitrotoluene	SU	SU	SU	N/A	SU	SU.
2,6-Dinitrotoluene	2U	SU	SU	A/Z	ns	ns .
1,2-Diphenylhydrazine	SU	50	SU.	N/A	SU	SU
bis (2-Ethylhexyl) Phthalate	SU	SU	50	N/A	SU	∞
Fluoranthene	SU	5U	50	N/A	SU.	SU
Fluorene	SU	2U	SU	N/A	50	SU
Hexachlorobenzene	SU	SU	su	N/A	2U	SU
Hexachlorobutadiene	SU	SU	SU	N/A	SU	SU
Hexachloroethane	SU.	SU	SU	N/A	SU	SU.
Hexachlorocyclopentadiene	SU	SU	5U	N/A	SU	SU
Indeno (1,2,3-cd) Pyrene	SU.	SU	50	N/A	ns	os.
Isophorone	SU	SU	SU	N/A	SU	SU
2-Methylnaphthalene	SU	2U	SU.	N/A	SU	SU.
2-Methylphenol	SU	SU	SU	N/A	SU	SU.
4-Methylphenol	SU	SU	50	N/A	SU	SU
Naphthalene	2O	SU	SU.	N/A	SU	SU.
2-Nitroaniline	25U	25U	25U	N/A	25U	25U
3-Nitroaniline	25U	25U	25U	N/A	25U	25U
4-Nitroaniline	25U	25U	25U	N/A	25U	25U
Nitrobenzene	5U	50	SU.	N/A	SU	SU
2-Nitrophenol	SU.	2U	50	N/A	SU	25U
4-Nitrophenol	25U	25U	25U	N/A	25U	25U
N-Nitrosodiphenylamine (1)	SU.	SU	SU	N/A	SU	SU
N-Nitroso-Di-n-Propylamine	SU.	50	SU	N/A	SU	DS.
Di-n-Octyl Phthalate	SU.	50	5U	N/A	SU	50
Pentachlorophenol	25U	25U	25U	N/A	25U	25U
Phenanthrene	SU.	50	5U	N/A	SU	SU
Phenol	2C	SU	50	N/A	20	50
Pyrene	su.	SU.	SU	N/A	SU	SU.
Pyridine	2C	su	SU	N/A	SU.	SU
1,2,4-Trichlorobenzene	SU	5U	SU	N/A	SU	SU
2,4,5-Trichlorophenol	100	100	100	N/A	10U	100
2,4,6-Trichlorophenol	SU	20	SU	N/A	SU	SU.
TPH (mg/L)	0.5U	0.5U	0.5U	N/A	0.5U	0.5U

U - Indicales compound analyzed for but not detected. SVOCs - Semivolatile organic compouns TPH - Total petroleum hydrocarbons N/A - Not analyzed

Analytical Results of Equipment Rinseate Blank Samples for Site 21 Minnesota Air National Guard Base Duluth, Minnesota Table K.8

Location No.: 021-RB 01   Sample Date: 7/13/94   Tob. Cample No.: 0407473.01	021-RB 01 7/13/94 9407473-01	021-RB 02 7/14/94 04075K7-13	021-RB 03 7/15/94 9407612-05	021-RB 04 7/22/94 9407999-07	021-RB 05 7/25/94	021-RB 07 10/5/94 9410180-08
Matrix	Water	Water	Water	Water	Water	Water
Pesticides/PCBs (ug/L)						
a-BHC	0.04U	0.02U	0.02U	N/A	0.02U	0.02U
b-BHC	0.10U	0.05U	0.05U	N/A	0.05U	0.05U
d-BHC	0.10U	0.05U	0.05U	N/A	0.05U	0.05U
g-BHC	0.06U	0.03U	0.03U	N/A	0.03U	0.03U
Heptachlor	0.06U	0.03U	0.03U	N/A	0.03U	0.03U
Aldrin	0.04U	0.02U	0.02U	N/A	0.02U	0.02U
Heptachlor Epoxide	0.10U	0.05U	0.05U	N/A	0.05U	0.05U
Endosulfan I	0.10U	0.05U	0.05U	N/A	0.05U	0.05U
Dieldrin	0.02U	0.01U	0.01U	N/A	0.01U	0.01U
Endrin	0.08U	0.04U	0.04U	N/A	0.04U	0.04U
Endosulfan II	0.06U	0.03U	0.03U	N/A	0.03U	0.03U
4,4'-DDT	0.13U	0.07U	U.07U	N/A	0.07U	0.07U
Endrin Aldehyde	0.19U	0.10U	0.10U	N/A	0.10U	0.10U
Methoxychlor	0.100	0.05U	0.05U	N/A	0.05U	0.05U
a-Chlordane	0.100	0.05U	0.05U	N/A	0.05U	0.05U
g-Chlordane	0.02U	0.01U	0.01U	A/N	0.01U	0.01U
4,4'-DDE	0.04U	0.02U	0.02U	N/A	0.02U	0.02U
4,4'-DDD	0.19U	0.10U	0.10U	N/A	0.10U	0.10U
Endosulfan Sulfate	0.19U	0.10U	0.100	N/A	0.10U	0.10U
Endrin Ketone	0.19U	0.10U	0.10U	N/A	0.10U	0.10U
Toxaphene	1.9U	1.0U	1.0U	N/A	1.00	1.00
Chlordane (technical)	0.100	0.05U	1.7U	N/A	0.05U	0.05U

Table K.8
Analytical Results of Equipment Rinseate Blank Samples for Site 21
Minnesota Air National Guard Base
Duluth, Minnesota

Location No.: Sample Date: Lab Sample No.:	021-RB 01 7/13/94 9407473-01	021-RB 02 7/14/94 9407567-13	021-RB 03 7/15/94 9407612-05		021-RB 04 021-RB 05 021-RB 07 7/22/94 7/25/94 10/5/94 9407999-02 9407971-02 9410180-08	021-RB 07 10/5/94 9410180-08
Matrix	Water	Water	Water	Water	Water	Water
PCB-1016	1.00	0.5U	0.5U	N/A	0.5U	0.5U
PCB-1221	1.0U	0.5U	0.5U	N/A	0.5U	0.5U
PCB-1232	1.00	0.5U	0.5U	N/A	0.5U	0.50
PCB-1242	1.0U	0.5U	0.5U	N/A	0.5U	0.5U
PCB-1248	1.0U	0.5U	0.50	N/A	0.5U	0.5U
PCB-1254	1.00	0.5U	0.5U	N/A	0.5U	0.5U
PCB-1260	1.0U	0.5U	0.5U	N/A	0.5U	0.5U
Metals (mg/L)						
Aluminum	0.09U	0.11	0.09U	D60.0	0.09U	N/A
Antimony	0.01U	0.01U	0.01U	0.010	0.01U	N/A
Arsenic	0.01U	0.01U	0.01U	0.01U	0.01U	N/A
Beryllium	0.004U	0.004U	0.004U	0.004U	0.004U	N/A
Cadmium	0.0001U	0.0001U	0.0001U	0.0002	0.0001U	N/A
Chromium	0.002U	0.007	0.002U	0.002U	0.002U	N/A
Copper	0.010	0.01	0.15	0.01U	0.01U	N/A
Lead	0.003U	0.003U	0.003U	0.003U	0.003U	N/A
Mercury	0.0002U	0.0002U	0.0002U	0.0002U	0.0002U	N/A
Nickel	0.002U	0.002U	900.0	0.002U	0.002U	N/A
Selenium	0.008U	0.005U	0.005U	0.005U	0.008U	N/A
Silver	0.006U	0.006U	0.006U	N/A	N/A	N/A
Thallium	0.004U	0.004U	0.004U	0.004U	0.004U	N/A
Zinc	0.02U	0.03	0.12	0.62	0.02	N/A

Table K.9
Analytical Results of Matrix Spike/Matrix Spike Duplicate Soil Samples at Site 17
Minnesota Air National Guard Base
Duluth, Minnesota

Location No.: Sample Date:	017-13 BH-9.0-9.5 - MS 7/18/94	017-13 BH-9.0-9.5 - MSD 7/18/94	017-017 BH-9.0-9.5 - MS 7/19/94	Location No.: 017-13 BH-9.0-9.5 - MS 017-13 BH-9.0-9.5 - MSD 017-017 BH-9.0-9.5 - MS 017-017 BH-9.0-9.5 - MSD 3
Lab Sample No.:	9407680-10	9407680-11	9407703-16	9407703-17
SVOCs (ug/kg) Matrix	Soil	Soil	Soil	Soil
Acenaphthene	1,800	1,200	1,500	1,300
Acenaphthylene	330U	330U	330U	330U
Aniline	330U	330U	330U	330U
Anthracene	330U	330U	330U	330U
Benzo (a) Anthracene	330U	330U	330U	330U
Benzo (b) Fluoranthene	330U	330U	330U	330U
Benzo (k) Fluoranthene	330U	330U	330U	330U
Benzo (a) Pyrene	330U	330U	330U	330U
Benzoic Acid	1,600U	1,600U	1,600U	1,600U
Benzo(g,h,i)Perytene	330U	330U	330U	330U
Benzyl alcohol	330U	330U	330U	330U
4-Bromophenylphenyl ether	330U	330U	330U	330U
Butylbenzylphthalate	330U	330U	330U	330U
di-n-Butyl phthalate	330U	330U	330U	330U
Carbazole	330U	330U	330U	330U
4-Chloroaniline	330U	330U	330U	330U
bis(2-Chloroethoxy)Methane	330U	330U	330U	330U
bis(2-Chloroethyl)Ether	330U	330U	330U	330U
bis(2-Chloroisopropyl)Ether	330U	330U	330U	330U
4-Chloro-3-Methylphenol	2,600	1,700	2,200	2,200
2-Chloronaphthalene	330U	330U	330U	330U
2-Chlorophenol	2,500	1,700	1,600	1,600
4-Chlorophenylphenyl ether	330U	330U	330U	330U
Chrysene	330U	330U	330U	330U
Dibenz(a,h)Anthracene	330U	330U	330U	330U
Dibenzofuran	330U	330U	330U	330U
1,2 -Dichlorobenzene	330U	330U	330U	330U
1,3-Dichlorobenzene	330U	330U	330U	330U
1,4-Dichlorobenzene	1,600	1,100	1,200	1,200
3,3'-Dichlorobenzidine	330U	330U	330U	330U
2,4-Dichlorophenol	330U	330U	330U	330U
Diethylphthalate	330U	330U	330U	330U
2,4-Dimethylphenol	330U	330U	330U	330U
Dimethyl Phthalate	330U	330U	330U	330U

Table K.9
Analytical Results of Matrix Spike/Matrix Spike Duplicate Soil Samples at Site 17
Minnesota Air National Guard Base
Duluth, Minnesota

Location No.:	017-13 BH-9.0-9.5 - MS	Location No.: 017-13 BH-9,0-9,5 - MS 017-13 BH-9,0-9,5 - MSD 017-017 BH-9,0-9,5 - MS 017-017 BH-9,0-9,5 - MSD	017-017 BH-9.0-9.5 - MS	017-017 BH-9.0-9.5 - MSD
Sample Date:	7/18/94	7/18/94	7/19/94	7/19/94
Lab Sample No.:	9407680-10	9407680-11	9407703-16	9407703-17
SVOCs (ug/kg) Matrix	Pos.	NoS	Soil	Soil
4,6-Dinitro-2-Methylphenol	0008	Ω008	0000 N	800U
2,4-Dinitrophenol	N008	N008	0000	0008
2,4-Dinitrotoluene	1,700	1,100	1,300	1,200
2,6-Dinitrotoluene	330U	330U	330U	330U
1,2-Diphenylhydrazine	330U	330U	330U	330U
bis (2-Ethylhexyl) Phthalate	330U	330U	330U	330U
Fluoranthene	330U	330U	330U	330U
Fluorene	330U	330U	330U	330U
Hexachlorobenzene	330U	330U	330U	330U
Hexachlorobutadiene	330U	330U	330U	330U
Hexachloroethane	330U	330U	330U	330U
Hexachlorocyclopentadiene	330U	330U	330U	330U
Indeno (1,2,3-cd) Pyrene	330U	330U	330U	330U
Isophorone	330U	330U	330U	330U
2-Methylnaphthalene	330U	330U	330U	330U
2-Methylphenol	330U	330U	330U	330U
4-Methylphenol	330U	330U	330U	330U
Naphthalene	330U	330U	330U	330U
2-Nitroaniline	M008	0008	330U	330U
3-Nitroaniline	M008	M008	0008	0008
4-Nitroaniline	M008	D008	0008	2008
Nitrobenzene	330U	330U	330U	330U
2-Nitrophenol	330U	330U	330U	330U
4-Nitrophenol	2,800	1,500	2,500	2,100
N-Nitrosodiphenylamine (1)	330U	330U	330U	330U
N-Nitroso-Di-n-Propylamine	1,700	1,100	1,200	1,200
Di-n-Octyl Phthalate	330U	3300	330U	330U
Pentachlorophenol	1,500	590	3,500	3,400
Phenanthrene	330U	330U	330U	330U
Phenol	2,500	1,800	1,700	1,500
Pyrene	2,100	1,300	1,500	1,400
Pyridine	330U	330U	330U	330U
1,2,4-Trichlorobenzene	1,700	1,100	1,300	1,200
2,4,5-Trichlorophenol	M008	0008	0008	800U
2,4,6-Trichlorophenol	330U	330U	330U	330U
:	;			
IPH (mg/kg)	430	430	420	400

MS - Matrix Spike MSD - Matrix Spike Duplicate ug/kg - micrograms per kilogram mg/kg - milligrams per kilogram

MS - Matrix Spike MSD - Matrix Spike Duplicate ug/kg - micrograms per kilogram

# Table K.10 Analytical Results of Matrix Spike/Matrix Spike Duplicate Soil Samples at Site 18 Minnesota Air National Guard Base Duluth, Minnesota

Location No.:	018-006 BH2-0.8-1.3 - MS	018-006 BH2-0.8-1.3 - MS 018-006 BH2-0.8-1.3 - MSD
Sample Date:	10/5/04	10/5/04
Lab Sample No.:	9410180-11	9410180-12
VOCs (ug/kg) Matrix	Soil	Soil
Acetone	100	100
Benzene	45	44
Bromodichloromethane	SU	5U
Bromoform	SU	SU
Bromomethane	10U	10U
2-Butanone	20U	20U
Carbon Disulfide	50	50
Carbon Tetrachloride	SU	50
Chlorobenzene	42	40
Chloroethane	10U	100
2-Chloroethylvinylether	100	10U
Chloroform	SU	SU
Chloromethane	100	10U
Dibromochloromethane	SU	50
1,1-Dichloroethane	50	50
1,1-Dichloroethene	54	55
1,2-Dichloroethane	SU	SU
total -1,2-Dichloroethene	SU	SU
1,2-Dichloropropane	SU	50
cis-1,3-Dichloropropene	SU	50
trans-1,3-Dichloropropene	SU	SU
Ethylbenzene	SU	50
2-Hexanone	100	100
Methylene Chloride	S	S
4-Methyl-2-Pentanone	10U	10U
Styrene	SU	50
1,1,2,2-Tetrachloroethane	SU	5U
Tetrachloroethene	SU	50
Toluene	45	48
1,1,1-Trichloroethane	SU	SU
1,1,2-Trichloroethane	SU	SU
Trichloroethene	44	41
Trichlorofluoromethane	SU	SU
Vinyl Acetate	10U	100
Vinyl Chloride	100	100
Xylenes (total)	SU	9

Analytical Results of Matrix Spike/Matrix Spike Duplicate Soil Samples at Site 21 Minnesota Air National Guard Base Duluth, Minnesota Table K.11

Sample Date:	Control of the Control of Control	TOTAL COST DOOR THAT DAYS THE	USE CALCALLE ATIC TAL	LOCATION 110.:   ULL-VIB BIT-10.0-10.5 - M.S   ULL-VIB BIT-10.0-10.5 - M.S   ULL-VIB BIT-10.10   ULL-VIB BIT-10.0-10.5   ULL-V
	7/14/94	7/14/94	7/12/94	7/12/94
Lab Sample No.:	9407567-15	9407567-16	9407405-11	9407443-12
VOCs (ug/kg) Matrix	Soil	Soil	Soil	Soil
Acetone	11	10U	100	100
Benzene	51	50	52	51
Bromodichloromethane	SU	SU	5U	5U
Bromoform	SU	SU	SU	SU
Bromomethane	100	100	100	10U
2-Butanone	20U	20U	20U	20U
Carbon Disulfide	50	SU	SU	su
Cartxon Tetrachloride	SU	SU	50	SU
Chlorobenzene	50	50	20	50
Chloroethane	100	100	10U	10U
2-Chloroethylvinylether	100	100	100	100
Chloroform	SU	SU	5U	SU
Chloromethane	100	100	100	100
Dibromochloromethane	SU	su	SU	SU SU
1,1-Dichloroethane	5U	SU	SU	50
1,1-Dichloroethene	49	50	63	49
1,2-Dichloroethane	50	SU	SU	SU
total -1,2-Dichloroethene	SU	SU	SU	SU SU
1,2-Dichloropropane	SU	SU	5U	SU
cis-1,3-Dichloropropene	50	SU	SU	50
trans-1,3-Dichloropropene	50	SU	SU	SU SU
Ethylbenzene	50	SU	50	SU SU
2-Hexanone	100	10U	100	10U
Methylene Chloride	50	SU	SU	SU
4-Methyl-2-Pentanone	100	100	100	10U
Styrene	SU	SU	SU	SU
11,1,2,2-Tetrachloroethane	50	SU	SU	5U
Tetrachloroethene	SU	SU	SU	SU
Toluene	50	50	52	51
1,1,1-Trichloroethane	SU	SU	50	SU
1,1,2-Trichloroethane	50	su	SU	SU
Trichloroethene	49	48	48	48
Trichlorofluoromethane	SU	SU	50	SU
Vinyl Acetate	100	100	100	10U
Vinyl Chloride	100	10U	100	100
Xylenes (total)	50	su	SU	SU

Table K.11
Analytical Results of Matrix Spike/Matrix Spike Duplicate Soil Samples at Site 21
Minnesota Air National Guard Base
Duluth, Minnesota

Location No.:	021-018 BH-10.0-10.5 - MS	Location No.:   021-018 BH-10.0-10.5 - MS   021-018 BH-10.0-10.5 - MSD   021-025 BH-14.0-14.5 - MS   021-025 BH-14.0-14.5 - MSD	021-025 BH-14.0-14.5 - MS	021-025 BH-14.0-14.5 - MSD
Sample Date;	7/14/94	7/14/94	7/12/94	7/112/94
Lab S	9407567-15	9407567-16	9407405-11	9407443-12
SVOCs (ug/kg) Matrix	Soil	Soil	Soil	Soil
Acenaphthene	1,400	1,500	1,200	1,300
Acenaphthylene	330U	330U	330U	330U
Aniline	330U	330U	3300	330U
Anthracene	330U	330U	330U	330U
Benzo (a) Anthracene	330U	330U	330U	330U
Benzo (b) Fluoranthene	330U	330U	330U	330U
Benzo (k) Fluoranthene	330U	330U	330U	330U
Benzo (a) Pyrene	330U	330U	330U	330U
Benzoic Acid	1,600U	1,600U	1,600U	1,600U
Benzo(g,h,i)Perylene	330U	330U	330U	330U
Benzyl alcohol	330U	330U	330U	330U
4-Bromophenylphenyl ether	330U	330U	330U	330U
Butylbenzylphthalate	330U	330U	330U	330U
di-n-Butyl phthalate	330U	330U	330U	330U
Carbazole	330U	330U	330U	330U
4-Chloroaniline	330U	330U	330U	330U
bis(2-Chloroethoxy)Methane	330U	330U	330U	330U
bis(2-Chloroethyl)Ether	330U	330U	330U	330U
bis(2-Chloroisopropyl)Ether	330U	330U	330U	330U
4-Chloro-3-Methylphenol	1,800	2,000	1,800	1,800
2-Chloronaphthalene	330U	330U	330U	330U
2-Chlorophenol	2,000	2,000	1,700	1,800
4-Chlorophenylphenyl ether	3300	330U	330U	330U
Chrysene	330U	330U	330U	330U
Dibenz(a,h)Anthracene	330U	330U	330U	3300
Dibenzofuran	330U	330U	330U	330U
1,2 -Dichlorobenzene	330U	330U	330U	330U
1,3-Dichlorobenzene	330U	330U	330U	330U
1,4-Dichlorobenzene	1,200	1,300	1,000	1,200
3,3'-Dichlorobenzidine	330U	330U	330U	330U
2,4-Dichlorophenol	330U	330U	330U	330U
Dicthylphthalate	330U	330U	330U	330U
2,4-Dimethylphenol	330U	330U	330U	330U
Dimethyl Phthalate	330U	330U	330U	330U

Analytical Results of Matrix Spike/Matrix Spike Duplicate Soil Samples at Site 21 Minnesota Air National Guard Base Duluth, Minnesota Table K.11

Location No.:	021-018 BH-10.0-10.5 - MS	Location No.: 021-018 BH-10.0-10.5 - MS 021-018 BH-10.0-10.5 - MSD 021-025 BH-14.0-14.5 - MS 021-025 BH-14 0-14.5 - MSD	021-025 BH-14.0-14.5 - MS	021-025 RH-14 0-14 5 WSD
Sample Date:	7/14/94	7/14/94	7/12/94	7/12/94
Lab Si	34	9407567-16	9407405-11	940743-12
SVOCs (ug/kg) Matrix	Soil	Soll	Soil	Soll
4,6-Dinitro-2-Methylphenol	0008	0008	800U	0008
2,4-Dinitrophenol	0008	0008	800U	
2,4-Dinitrotoluene	1,100	1,200	1,200	1,100
2,6-Dinitrotoluene	330U	330U	330U	330U
1,2-Diphenylhydrazine	330U	330U	330U	330U
bis (2-Ethylhexyl) Phthalate	330U	330U	330U	330U
Fluoranthene	330U	330U	330U	330U
Fluorene	330U	330U	330U	3300
Hexachlorobenzene	330U	330U	330U	330U
Hexachlorobutadiene	330U	330U	330U	330U
Hexachloroethane	330U	330U	330U	330U
Hexachlorocyclopentadiene	330U	330U	330U	330U
Indeno (1,2,3-cd) Pyrene	330U	330U	330U	330U
Isophorone	330U	330U	330U	330U
2-Methylnaphthalene	330U	330U	330U	330U
2-Methylphenol	330U	330U	330U	330U
4-Methylphenol	330U	330U	330U	330U
Naphthalene	330U	330U	330U	330U
2-Nitroaniline	800U	0008	0008	0008
3-Nitroaniline	0008	800U	1008	0008
4-Nitroaniline	800U	800U	M008	800U
Nitrobenzene	330U	330U	330U	330U
2-Nitrophenol	330U	330U	330U	330U
4-Nitrophenol	1,100	1,200	1,800	1,500
N-Nitrosodiphenylamine (1)	330U	330U	330U	330U
N-Nitroso-Di-n-Propylamine	1,200	1,300	1,100	1,200
Di-n-Octyl Phthalate	330U	330U	330U	330U
Pentachiorophenol	850	1,000	1,500	1,200
Phenanthrene	330U	330U	330U	330U
Phenol	2,000	2,200	1,800	2,000
Pyrene	1,600	1,700	1,400	1,400
Pyridine	330U	330U	330U	330U
1,2,4-Trichlorobenzene	1,400	1,300	1,100	1.200
2,4,5-Trichlorophenol	M008	0008	0008	0008
2,4,6-Trichlorophenol	330U	330U	330U	330U
T'DH (ma/l/a)	3	;		
TTT (IIIS/NE)	CI.	15	420	410

U - Indicates compound analyzed for but not detected. SVOCs - Semivolatile organic compounds TPH - Total petroleum hydrocarbons

MS - Matrix Spike MSD - Matrix Spike Duplicate ug/kg - micrograms per kilogram mg/kg - milligrams per kilogram

Table K.11
Analytical Results of Matrix Spike/Matrix Spike Duplicate Soil Samples at Site 21
Minnesota Air National Guard Base
Duluth, Minnesota

Location No.:	021-018 BH-10.0-10.5 - MS	Location No.: 021-018 BH-10.0-10.5 - MS 021-018 BH-10.0-10.5 - MSD 021-025 BH-14.0-14.5 - MS 021-025 BH-14.0-14.5 - MSD	021-025 BH-14,0-14.5 - MS	021-025 BH-14,0-14.5 - MSD
Sample Date:	7/14/94	7/14/94	7/12/94	7/12/94
Lab Sample No.:	9407567-15	9407567-16	9407405-11	9407443-12
Matrix	Soll	Soil	Soil	Soil
Pesticides/PCBs (ug/kg)				
a-BHC	0.67U	0.67U	0.67U	0.67U
b-BHC	1.7U	1.7U	1.7U	1.7U
d-BHC	1.7U	1.7U	1.7U	1.7U
g-BHC	16	17	16	16
Heptachlor	17	17	17	17
Aldrin	15	16	16	15
Heptachlor Epoxide	1.7U	1.7U	1.7U	1.7U
Endosulfan I	1.7U	1.7U	1.7U	1.70
Dieldrin	35	36	35	35
Endrin	39	40	37	38
Endosulfan II	1.0U	1.00	1.00	1.0U
4,4'-DDT	30	32	33	34
Endrin Aldehyde	3.3U	3.3U	3.3U	3.3U
Methoxychlor	1.70	1.70	1.7U	1.7U
a-Chlordane	0.33U	0.33U	0.33U	0.33U
g-Chlordane	1.70	1.70	1.7U	1.7U
4,4'-DDE	0.67U	0.67U	0.67U	0.67U
4,4'-DDD	3.3U	3.3U	3.3U	3.3U
Endosulfan Sulfate	3.3U	3.3U	3.3U	3.3U
Endrin Ketone	3.3U	3.3U	3.3U	3.3U
Toxaphene	330	33U	33U	33U
Chlordane (technical)	1.70	1.70	1.7U	1.7U

Table K.11
Analytical Results of Matrix Spike/Matrix Spike Duplicate Soil Samples at Site 21
Minnesota Air National Guard Base
Duluth, Minnesota

Location No.: Sample Date: Lab Sample No.:	021-018 BH-10.0-10.5 - MS 7/14/94 9407567-15	021-018 BH-10.0-10.5 - MSD 7/14/94 9407567-16	021-025 BH-14.0-14.5 - MS 7/12/94 9407405-11	Location No.:         021-018 BH-10.0-10.5 - MS         021-018 BH-10.0-10.5 - MSD         021-025 BH-14.0-14.5 - MSD           Sample Date:         7/14/94         7/12/94         7/12/94           Sample No.:         9407567-15         9407405-11
Matrix		Soil	Soil	Soil
PCB-1016	U71	U71	170	17U
PCB-1221	υ21	17U	U7.1	170
PCB-1232	170	17U	U71	170
PCB-1242	17U	170	U71	170
PCB-1248	170	170	U71	17U
PCB-1254	17U	U71	U7.U	17U
PCB-1260	170	171	170	170
Metals (mg/kg)				
Aluminum	9,570	12,300	15,200	14,700
Antimony	Ŋ	5	UI	\$
Arsenic	4	4	22	22
Beryllium	92	88	95.2	94.5
Cadmium	95.0	94.2	93.2	92.2
Chromium	108	113	125	121
Copper	167	172	156	154
Lead	6.2	6.7	7.4	7.1
Mercury	1.2	1.2	1.0	6.0
Nickel	112	116	121	117
Selenium	1.3	1.5	1.5	1.4
Silver	91	8	72.4	73.8
Thallium	0.4U	0.4U	4.6	4.7
Zinc	128	137	136	136

MS - Matrix Spike MSD - Matrix Spike Duplicate ug/kg - micrograms per kilogram

# Analytical Results of Matrix Spike/Matrix Spike Duplicate Sediment Samples Collected for Site 21 Minnesota Air National Guard Base Duluth, Minnesota Table K.12

Location No.:	021-004SD-MS	021-004SD-MSD
Sample Date:	10/4/94	10/4/94
VOCs (110/km) Motors	Sediment	Sediment
	40	34
Benzene	39	40
Bromodichloromethane	SU	SU
Bromoform	SU	SU.
Bromomethane	100	10U
2-Butanone	20U	70O
Carbon Disulfide	SU	SU
Carbon Tetrachloride	50	50
Chlorobenzene	28	29
Chloroethane	10U	100
2-Chloroethylvinylether	10U	10U
Chloroform	<b>2</b> 0	5U
Chloromethane	10U	10U
Dibromochloromethane	SU	SU
1,1-Dichloroethane	SU	ns
1,1-Dichloroethene	53	53
1,2-Dichloroethane	SU	SU.
total -1,2-Dichloroethene	50	20
1,2-Dichloropropane	SU	20
cis-1,3-Dichloropropene	50	2U
trans-1,3-Dichloropropene	SU.	SU SU
Ethylbenzene	SU	SU
2-Hexanone	100	100
Methylene Chloride	13	16
4-Methyl-2-Pentanone	100	100
Styrene	2U	50
1,1,2,2-Tetrachloroethane	SU	) su
Tetrachloroethene	2C	SU
Toluene	40	40
1,1,1-Trichloroethane	SU	SU.
1,1,2-Trichloroethane	SU.	ns [
Trichloroethene	34	36
Trichlorofluoromethane	SU.	2C
Vinyl Acetate	100	100
Vinyl Chloride	100	100
Xylenes (total)	7	SU

Analytical Results of Matrix Spike/Matrix Spike Duplicate Sediment Samples Collected for Site 21 Minnesota Air National Guard Base Duluth, Minnesota Table K.12

Location No.:	021-004SD-MS	021-004SD-MSD
Samule Date:	10/4/94	10/4/94
Lab Sample No.:	9410146-06	9410146-07
SVOCs (ug/kg) Matrix	Sediment	Sediment
Acenaphthene	2,600	2,200
Acenaphthylene	330U	330U
Aniline	330U	330U
Anthracene	330U	330U
Benzo (a) Anthracene	330U	330U
Benzo (b) Fluoranthene	330U	330U
Benzo (k) Fluoranthene	330U	330U
Benzo (a) Pyrene	330U	330U
Benzoic Acid	1,600U	1,600U
Benzc(g,h,i)Perylene	330U	330U
Benzyl alcohol	330U	330U
4-Bromophenylphenyl ether	330U	330U
Butylbenzylphthalate	330U	330U
di-n-Butyl phthalate	330U	330U
Carbazole	330U	330U
4-Chloroaniline	330U	330U
bis(2-Chloroethoxy)Methane	330U	330U
bis(2-Chloroethyl)Ether	330U	330U
bis(2-Chloroisopropyl)Ether	330U	330U
4-Chloro-3-Methylphenol	2,500	2,500
2-Chloronaphthalene	330U	330U
2-Chlorophenol	1,900	1,600
4-Chlorophenylphenyl ether	330U	330U
Chrysene	330U	330U
Dibenz(a,h)Anthracene	330U	330U
Dibenzofuran	330U	330U
1,2 -Dichlorobenzene	330U	330U
1,3-Dichlorobenzene	330U	330U
1,4-Dichlorobenzene	1,300	096
3,3'-Dichlorobenzidine	330U	330U
2,4-Dichlorophenol	330U	330U
Diethylphthalate	330U	330U
2,4-Dimethylphenol	330U	330U
Dimethyl Phthalate	330U	330U

MS - Matrix Spike MSD - Matrix Spike Duplicate ug/kg - micrograms per kilogram

U - Indicates compound analyzed for but not detected. SVOCs - Semivolatile organic componds SD - Sediment

Analytical Results of Matrix Spike/Matrix Spike Duplicate Sediment Samples Collected for Site 21 Minnesota Air National Guard Base Duluth, Minnesota Table K.12

Location No.:	021-004SD-MS	021-004SD-MSD
Sample Date:	10/4/94	10/4/94
Lab Sam	9410146-06	9410146-07
Semivolatile Organics Matrix	Sediment	Sediment
4,6-Dinitro-2-Methylphenol	800U	M008
2,4-Dinitrophenol	0008	0008
2,4-Dinitrotoluene	1,500	1,400
2,6-Dinitrotoluene	330U	330U
1,2-Diphenylhydrazine	330U	330U
bis (2-Ethylhexyl) Phthalate	330U	330U
Fluoranthene	330U	330U
Fluorene	330U	330U
Hexachlorobenzene	330U	3300
Hexachlorobutadiene	330U	330U
Hexachloroethane	330U	330U
Hexachlorocyclopentadiene	330U	330U
Indeno (1,2,3-cd) Pyrene	330U	330U
Isophorone	330U	330U
2-Methylnaphthalene	330U	330U
2-Methylphenol	330U	330U
4-Methylphenol	330U	330U
Naphthalene	330U	330U
2-Nitroaniline	330U	330U
3-Nitroaniline	M008	D008
4-Nitroaniline	0008	300U
Nitrobenzene	330U	330U
2-Nitrophenol	330U	330U
4-Nitrophenol	2,400	2,500
N-Nitrosodiphenylamine (1)	330U	330U
N-Nitroso-Di-n-Propylamine	1,800	1,400
Di-n-Octyl Phthalate	330U	330U
Pentachlorophenol	1,200	1092
Phenanthrene	330U	330U
Phenol	2,000	1,800
Pyrene	2,800	2,600
Pyridine	330U	330U
1,2,4-Trichlorobenzene	1,400	1,000
2,4,5-Trichlorophenol	0008	M008
2,4,6-Trichlorophenol	330U	330U

Analytical Results of Matrix Spike/Matrix Spike Duplicate Sediment Samples Collected for Site 21 Minnesota Air National Guard Base Duluth, Minnesota Table K.12

Location No.s Samule Pates	021-004SD-MS 10/4/94	021-004SD-MSD 10/4/94
Lab Sample No.:	9410146-06	9410146-07
Matrix	Sediment	Sediment
TPII (mg/kg)	530	530
Pesticides/PCBs (ug/kg)		
a-BHC	0.67U	0.67U
b-BHC	1.7U	1.7U
d-BHC	1.7U	U.7U
g-BHC	16	16
Heptachlor	19	41
Aldrin	17	16
Heptachlor Epoxide	1.7U	1.70
Endosulfan I	1.7U	1.70
Dieldrin	32	33
Endrin	39	37
Endosulfan II	1.0U	1.0U
4,4'-DDT	30	25
Endrin Aldehyde	3.3U	3.3U
Methoxychlor	1.7U	1.7U
a-Chlordane	0.33U	0.33U
g-Chlordane	1.7U	1.7U
4,4'-DDE	0.67U	0.67U
4,4'-DDD	3.3U	3.3U
Endosulfan Sulfate	3.3U	3.3U
Endrin Ketone	3.3U	3.3U
Toxaphene	33U	33U
Chlordane (technical)	1.7U	1.7U
PCB-1016	17U	U71
PCB-1221	170	17U
PCB-1232	170	U71
PCB-1242	170	U71
PCB-1248	U71	17U
PCB-1254	17U	U71
PCB-1260	17U	170

Analytical Results of Matrix Spike/Matrix Spike Duplicate Sediment Samples Collected for Site 21 Minnesota Air National Guard Base Table K.12

Duluth, Minnesota

Location No.:	. 021-006SD - MS	021-006SD - MSD
Sample Date:	7/23/94	7/14/94
Lab Sample No:	9407998-14	9407998-15
Metals_(mg/kg)	Soll	Soil
Aluminum	9,580	10,600
Antimony	S	5.
Arsenic	14	15
Beryllium	94.2	0.96
Cadmium	92.2	92.9
Chromium	114	118
Copper	128	130
Lead	72	73
Mercury	1.1	1.1
Nickel	108	111
Selenium	2.2	2.2
Silver	N/A	N/A
Thallium	5.2	5.1
Zinc	140	145

MSD - Matrix Spike MSD - Matrix Spike Duplicate mg/kg - milligrams per kilogram

## Table K.13 Analytical Results of Water QA/QC Samples During the May 1995 Sampling Event Minnesota Air National Guard Base Duluth, Minnesota

017-001RB	017-002RB
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5/19/95
	9505766-01
	Water
	5 U
	5 U
	5 U
i e	5 U
	5 U
	5 U
	5 U
	5 U
	25 U
	5 U
	5 U
ł	5 U
ł	B
	5 U 5 U
l	
	5 U
1	5 U
l	5 U
	5 U
l	5 U
!	5 U
1	5 U
i e	5 U
	5 U
	5 U
	5 U
1	5 U
1	5 U
1	5 U
	5 U
	5 U
	5 U
	5 U
5 U	5 U
25 U	25 U
25 U	25 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
	5 U
1	5 U
1	5 U
	5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U

## Table K.13 Analytical Results of Water QA/QC Samples During the May 1995 Sampling Event Minnesota Air National Guard Base Duluth, Minnesota

	Location No.:		017-002RB
	Sample Date:	*************	5/19/95
2770.2	Lab Sample No.:		9505766-01
SVOCs	Matrix:	Water	Water
2-Methylnaphthalene		5 U	5 U
2-Methylphenol		5 U	5 U
4-Methylphenol		5 U	5 U
Naphthalene		5 U	5 U
2-Nitroaniline		25 U	25 U
3-Nitroaniline		25 U	25 U
4-Nitroaniline		25 U	25 U
Nitrobenzene		5 U	5 U
2-Nitrophenol		25 U	25 U
4-Nitrophenol		25 U	25 U
N-Nitrosodiphenylamine (1)		5 U	5 U
N-Nitroso-di-n-propylamine		5 U	5 U
Di-n-octyl phthalate		5 U	5 U
Pentachlorophenol		25 U	25 U
Phenanthrene		5 U	5 U
Phenol		5 U	5 U
Pyrene		5 U	5 U
Pyridine		5 U	5 U
1,2,4-Trichlorobenzene		5 U	5 U
2,4,5-Trichlorophenol		10 U	10 U
2,4,6Trichlorophenol		5 U	5 U
	Location No.:	017-001RB	017-002RB
	Sample Date:	5/17/95	5/19/95
	Lab Sample No.:	9505673-01	9505766-01
Metals	Matrix:	Water	Water
Mercury, Total		0.0004 U	0.0004 U

#### Table K.14

#### Analytical Results of Soil QA/QC Matrix Spike/Matrix Spike Duplicate Sediment Samples Collected for Site No. 17

#### Minnesota Air National Guard Base

#### Duluth, Minnesota

	, miniesota	
Location No.:		017-032BH 1.5 - 2 MSD
Sample Date:	5/19/95	5/19/95
Lab Sample No.:	9505766-09	9505766-10
SVOCs Matrix:	Soil	Soil
Acenaphthene	1,600	2,000
Acenaphthylene	660 U	660 U
Aniline	660 U	660 U
Anthracene	660 U	660 U
Benzo(a)anthracene	660 U	810
Benzo(b)fluoranthene	660 U	760
Benzo(k)fluoranthene	660 U	660 U
Benzo(a)pyrene	660 U	760
Benzoic acid	3,200 U	3,200 U
Benzo(g,h,i)perylene	660 U	660 U
Benzyl alcohol	660 U	660 U
4-Bromophenylphenyl ether	660 U	660 U
Butylbenzylphthalate	660 U	660 U
Di-n-butyl phthalate	660 U	660 U
Carbazole	660 U	660 U
4-Chloroaniline	660 U	660 U
Bis(2-chloroethoxy)methane	660 U	660 U
Bis(2-chloroethyl)ether	660 U	660 U
Bis(2-chloroisopropyl)ether	660 U	660 U
4-Chloro-3-methylphenol	2,400	2,600
2-Chloronaphthalene	660 U	660 U
2-Chlorophenol	2,700	3,100
4-Chlorophenylphenyl ether	660 U	660 U
Chrysene	660 U	990
Dibenz(a,h)anthracene	660 U	660 U
Dibenzofuran	660 U	660 U
1,3-Dichlorobenzene	660 U	660 U
1,4-Dichlorobenzene	1,200	1,400
3,3'-Dichlorobenzidine	660 U	660 U
2,4-Dichlorophenol	660 U	660 U
Diethylphthalate	660 U	660 U
2,4-Dimethylphenol	660 U	660 U
Dimethyl phthalate	660 U	660 U
4,6-Dinitro-2-methylphenol	1,600 U	1,600 U
2,4-Dinitrophenol	1,600 U	1
2,4-Dinitrotoluene	1,200	1,600 U
2,6-Dinitrotoluene	1,200 660 U	1,300
1,2-Diphenylhydrazine	=	660 U
Bis(2-ethylhexyl)phthalate	660 U	660 U
Fluoranthene	660 U	660 U
Fluorene	680	1,200
!	660 U	660 U
Hexachlorobenzene	660 U	660 U
Hexachlorobutadiene	660 U	660 U
Hexachloroethane	660 U	660 U
Hexachlorocyclopentadiene	660 U	660 U
Indeno(1,2,3-cd)pyrene	660 U	660 U
Isophorone	660 U	660 U

## Table K.14 Analytical Results of Soil QA/QC Matrix Spike/Matrix Spike Duplicate Sediment Samples Collected for Site No. 17

#### Minnesota Air National Guard Base

#### Duluth, Minnesota

	Location No.: Sample Date:		017-032BH 1.5 - 2 MSD 5/19/95
	Lab Sample No.:	9505766-09	9505766-10
SVOCs	Matrix:		Soil
2-Methylnaphthalene		660 U	660 U
2-Methylphenol		660 U	660 U
4-Methylphenol		660 U	660 U
Naphthalene		660 U	660 U
2-Nitroaniline		1,600 U	1,600 U
3-Nitroaniline		1,600 U	1,600 U
4-Nitroaniline		1,600 U	1,600 U
Nitrobenzene		660 U	660 U
2-Nitrophenol		660 U	660 U
4-Nitrophenol		1,900	2,300
N-Nitrosodiphenylamine (1)		660 U	660 U
N-Nitroso-di-n-propylamine		1,400	1,600
Di-n-octyl phthalate		660 U	660 U
Pentachlorophenol		940 J	2,100
Phenanthrene		810	1,700
Phenol		2,200	2,500
Pyrene		3,200	4,600
Pyridine		660 U	660 U
1,2,4-Trichlorobenzene		1,500	1,800
2,4,5-Trichlorophenol		1,600 U	1,600 U
2,4,6Trichlorophenol		660 U	660 U
	Location No.:	017-032BH 1.5 - 2 MS	017-032BH 1.5 - 2 MSD
	Sample Date:	5/19/95	5/19/95
	Lab Sample No.:	9505766-09	9505766-10
Metals	Matrix:	Soil	Soil
Mercury, Total		4.0	4.5

### APPENDIX L FIELD LOG BOOK DATA

THIS PAGE INTENTIONALLY LEFT BLANK

#### SECTION L.1 INTRODUCTION

Field log books were attained by OpTech personnel for documentation of the field activities for the Addendum 1 RCRA Facility Investigation at Duluth Air National Guard Base, Duluth, Minnesota. The field work was conducted between 11 July 1994 and 27 July 1994. OpTech returned for recollection of soil, groundwater, and sediment samples between 04 October 1994 and 07 October 1994.

THIS PAGE INTENTIONALLY LEFT BLANK

# DISTANCES FROM SIDE STAKES FOR CROSS-SECTIONING

In the figure below: opposite 7 under 15th of 1.

In the figure below: opposite 7 under 15th of 11ff and under 3 tead 110, the distance out from the side stake at left. Also, opposite 11 under 15th of 11ff and under 11 read 167, the distance out from the side stake at right.

SOLUTION STATE TO STA

SIDE STAKE

																_																											
1	٠٥.	Cui	0	-	cı	6	7	5	.0	7	8	6	10	Ξ	12	13	7	15	91	17	18	61	50	21	25	23	53	52	5.6 2.6	27	29	59	95	3	35	33	#	35	36	37	38	33	우
-	0.		4.	2.9	7	9	7.4	88	10.4	11.9	13.4	14.9	16.4	17.8	194	50.9	22.4	23.9	25.4	28.9	28.4	29.9	31.4	32.9	34.4	35.9	37.4	38.9	40.4	41.9	43.4	6 14	48.4	47.9	49.4	50.9	52.4	53.9	55.4	56.9	58.4	59.9	61.4
-	30		1.2	2.7	5.7	5.7	7.2	9.7	102	11.7	13.2	14.7	182	17.7	102	20 7	22.2	23.7	25.2	26.7	28.2	29.7	31.2	32.7	34.2	35.7	37.2	38.7	40.2	41.7	43.2	44.7	46.2	47.7	49.2	50.7	52.2	53.7	55.2	58.7	58.2	59.7	61.2
	7	Stake	=	2.6	7	5.8	7.1	8 8	1.01	11.8	13.1	14.8	1.8.1	17.8	1.0.1	20.6	22.2	23.8	25.1	26.6	28.1	29.6	31.1	32.6	34.1	35.6	37.1	38.6	40.1	41.6	13.1	44.8	<del>1</del> 9	47.0	48.1	50.8	52.1	53.6	55.1	9.99	58.1	59.6	61.1
	Ð	Shoulder Ste	6.0	. 2.4	3.9	4.	6.9	4.0	9.9	7:	12.8	<del>-</del>	15.9	17.4	6.01	20.4	21.9	23.4	24.9	28.4	27.9	29.4	808	32.4	33.9	35.4	36.9	38.4	39.8	¥.1.4	45.8	4.44	45.0	47.4	48.9	20.4	51.9	53.4	54.0	58.4	67.9	59.4	6.08
	5.	ઠ	9.0	2.3	3.0	5.3	8.8	B.3	9.6	11.3	12.8	7.3	15.8	17.3	18.6	203	21.8	23.3	24.6	26.3	27.8	29.3	808	32.3	33.8	35.3	36.8	38.3	39.8	£1,3	45.8	44.3	45.8	47.3	48.8	50.3	51.8	53.3	54.B	56.3	57.8	59.3	88
	₹.	from Skde		2.1		5.1	6.6	9.1	96	=	12.6	Ξ	15.6	17.1	18.8	20.1	21.6	23.1	24.6	26.1	27.6	29.1	30.0	32.1	33.6	35.1	36.6	38.1	38.6	=	42.6	1.1	456	47.1	48.8	2.	51.6	53.1	54.6	58.1	57.6	59.1	9.09
	e;	or or	0.5	5.0	3.5	20	6.5	0.8	9.5	11.0	12.5	140	15.5	17.0	185	20.0	21.5	23.0	24.5	26.0	27.5	20.0	30.5	32.0	33.5	35.0	36.5	380	39.5	41.0	42.5	44.0	45.5	47.0	48.5	50.0	51.5	53.0	54.5	56.0	57.5	93.0	60.5
	.2	Distance	0.3	1.8	3.3	4.0	6.3	7.8	6.3		12.3	13.8	15.3	16.8	183	10 8	21.3	22.8	24.3	25.8	27.3	28.8	30.3	31.8	33.3	34.8	38.3	37.8	39.3	40.8	42.3	43.8	45.3	468	48.3	49.8	51.3	52.B	54.3	55 8	57.3	58.8	
			0.2	1.7	32	4.7	6.2	7.7	9.5	107	2.3	13.7	15.2	16.7	18.2	19.7	21.2	227	242	25.7	27.2	28.7	30.2	31.7	33.2	34.7	36.2	37.7	39.2	40.7	45.2	43.7	45.2	16.7	48.2	49.7	51.2	52.7	54.2	55.7	57.2	58.7	602
1	a		0.0	1.5				7.5	06	105	12.0	13.5		16.5	18.0	10.5	21.0	22.5	24.0	25.5	27.0	28.5	30.0	31.5	33.0	.345	360	37.5	39.0	405	45.0	43.5	15.0	46.5	18.0	49.5	51.0	52.5	540	55.5	57.0	58.5	
	.0.	J _C	0	-	N	е	-7	S	:0	~	7)	6	91	==	2	=	7	15	9	<u> </u>	16	2	92	5	22	នួ	7.	52	== 92	27	87	53	8	5	용	33	34	35	36	37	98	<del>-</del>	 0+

Action the hair

Name (athern ferlickett

Operation of Technology Cognition
Addendum 1 week the School

Sanding 131-cool

Project Dubuth ANG RE

Sales 17 6 a & 21

Addendum 1 week then
13 bx - 101

13 bx - 101

"Thie in the Bah"—a unique all wealter writing surface created to shed water and to enhance the written image. Makes it possible to write snarp, legible field data in any kind of weather.

a product of

# J. L. DARLING CORPORATION TACOMA, WA 98421-3696 USA

THE REPORT OF THE PARTY OF THE

	CONTENTS		0 1 (1 0 1/1)
PAGE NO.	REFERENCE	DATE	
	28-	5388	ANG LON
<u> </u>	(x+ /62)		
	at office		-
	The state of the s		100 VC
		7	O STATE OF THE CONTRACT OF THE
·			
			-
!			1) 1 (1, ie.s.)
<u> </u>			-
· · · · · · ·			
·			•
<del>-:</del>			
<u> </u>	The state of the s		-
<u> </u>			
1	AND A COMMON AND AND AND ADDRESS OF THE PARTY OF THE PART		

Manday

1 Usa Herry College Strange of Made

and Herry alasma, terry viadine a

1 College Strange of Made

1 College Strange Strange

1 College Strange Strange Strange

1 College Strange Strange Strange Strange

1 College Strange 
800  Soo Kathen Billy 3  Soo Mathen Billy 3  Metwick Block Block  Cut Headquites (Sleen Wilnest)  gave hinh a copy of the CES)	855 - net with Bure 1994  (et live Congruening for dilling Congruent for additions of congruent for forthym Reteberal	MNANG-Capet. Stren whoused base CE - Some Key need to	Sie 21 and the 17 clue to (conflored at 3) and the 17 clue to (conplex) utilities. ( hore, 90)	Wen the hine stated alt.  for phire line cleaning at Site 17.  A cother Resure at Site 17.
Laly: SPL Luborator (Linda M. Better 6870 STENEMANG De. 110021 Tricus 77059 (713) (660-699) Ful (713) (660-8975	5	ANG LT. Col. Michael Washelesse. ANG RAC/CEVR 3500 Fertchet avenue 24, White	Aran de Cept Kadisson motel Aran de Copt Kadisson motel Dulat Ofted Kalinsyn Predictory	West Motherst Rutch Bords.

Lientte merald for 5  Lunch Lies Church for 5  A athy, Duildoll  Musen Towas  on Site 21 to still	The Line of the Li	time of the control o	Scarinson, liqued to much at 735
450 with Kithyn Putliett  Whave (45.1.) Steven webrusets  id Set 17 to well about  act.  need to move wooden  control botted southerst	when DRMO neroonnal,  paid to much of pad,  well north of pad,  in middle of road on  wheth that has obvoider.	to introduct DRMO Dely  to introduct DPMO Dely  to promote with the reduced  (apt Steven teatrant)  returned key to fate at site.	NAVING (cyl. Stein) Luctett act

Tuesday 7 /2/94 7  Trest wind her; Rice S. Cois  Serveny Wind 10 + Flagsh  Jose Bred Trans	That Explain to whered  All Explains to set up  All Minimized avoir  OFTERIX Sething Anthron Fit E  The observe steam eleaning  af third and well and anyther were	Societamenated by the following pectedure:  The societament of any potate water,  thereby and the following after.  Alectrolanination did ug  ordered auges.  Author funds friends
16,200 Refurmed to the year 1533 10 pack Food explored 1700 food 500 labor 1806 1700 food 1800 labor 1806 1700 food 1800 labor 1800	Lena sucre that  Ly parkage a  2-40 nd wal  DI Late not me vire  150 40 me vire  170 40 me vire	Lety Turned

The second secon			
2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ting france se CE)	K wp	24-1,5-2,0 (-BTEX Decirat
2/94 Est unisad. 11 lestis Byrd Toures As. Tittutet	Medeth of Safety meeting all Sile of Safety Mylian Health of Safety Mylian Source Seng (Sase Ch Banch 027-0258H Wile, 13.20, 70 C	13 10, 70C 13 10, 70C 150 Stick ap 10 70' 865 Stated Dieling 021-0258HD Collected 0.5-25	5 15% reco 021-025 BH-1,5- 12051 C2C-BTE (CC/y) Patriet
25	37 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13 20, 250, 250, 250, 250, 250, 250, 250,	5 021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1021 - 1
	Suce Suce Suce Suce	Started Started Collecte	
quo landingen	950	1015	15lana ? 100 Collected Sin 25 %6.1 U 51000 51000
3			
	alten of the state	recel.	ر راد
7/12/94 (LENT 10 1/12/94) (LENT 10 1/12/94) (LENT 10 1/12/94) 2 bays of 1CC. 2 bays of 1CC.	My sete 2/ (Huntingdon 17 of E act Sete 21 whowheld with Capt, Storen Walreweth also the warry were below has dorde near site 21 for	dugan he will check with engineers on with Base cert engineers on with hos itemed the following.	121-02384 121-02984 11-02984 rimumication or a the for cleanance. Kathy Packate
1-611 10 1/12/94 (2011 10 1/11/12) (2011 10 10/10 2 643 0/10 2 643 0/10	white LI (14,11-11,11) der II of E act Sich 2 I act Sich 2 I leven webreuch there was site 2 I	augus — he vill  augus — be vill  und base civit en  on utilitien once ut site  the coll - 02/8#	021-02364 021-02964 Corruministion on to the for cleanance Kathy Pretextor
CCI (CCI (CCI (CCI (CCI (CCI (CCI (CCI	det	autens autens invatte in attick in attick in attick	1021 621 621 6021 7
21/2 CASAS 21/5 21/5	650		615

S.

dry mist at very end,
worts, currele in hind.

(ex llected 021-025 BH

3 7 8 16 40 621-025 BH-19,0
Collected Supple 021-025 BH-19,0
VOA 1807 25,14.5 15.6 Pm 15.6 Pm True to little clay Silt, true - 1:11/2 cley, little to some graved, grunde to corbite size; yearland bown to withe gran bown granto -7/12/94 ine yelleind thun to contract F metib (jSM 13-155 ms/ I de BC, 3.5-11-6 6'51 -025BH-6-40 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 10.0-10 Lot pom DID parling hecropes or amory plastic ATHS - ATHS 6.5-2.5 Sitt little 2 une grandle form la spe dazie Lyc Claurist 7/12/94 horts ! 1650 Coellaten Su 1050

13 184-14.5 -	Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lulen Lu	23.8H 23.8H 57.20 7.EX)	durale to to
7/12/94 13-15/ 4 02/-023 74 (5/2 18	80 % Se electrich br mode in h " thick sit	Collected 0.5 - 2.5 ( Collected 0.5 ( Collected	16.2 from to little clay; Little to jone quivel fundle to collecte incola du to moist.  Kach Pathot
a llotted  cled Sayske  A TOP	11/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8	Collected Collected Next Susa Trit S	Little to 20 Kath
12.15 (2.20 Celle 2.5" (15) x 6" (5)	PLD 107 ppm 60% secuents ATHS 3/8 ppm Sand medium 13-15 Silt and Sand medium 10 dure yeldinish brown at 19/5 ~ 2" thick sill a letter	12 45 (C.S. X.	ATHS 16.0 0.5'- 2.5'
0.5	·	. 0	
1-67-023 BH 021-013 BH 318-11-11-11-13	Do not tollect due to peel recover due collect next to collect	87EX 23.811	little clay
7/12/9 21/12/9 2d Songles 5 - 2.5 5 - 2.5	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	021-0 17 021-0 17 17 95	the to from 11.0 - 11.5
Collarte	Called No. A.	Mallicete Carlecte Ca	grahad with
12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Shire Shire Shire Shire Shire ATHS	10 - 12 W C + 11.0,1

0,5-25 Sill the Clay 15 Little gravell grand to colder of the colder of the mist at upper interval, edited the heart.	les	36 10 62 55 6 Recents  Sict the the clay to formed to medium to dear yellurial brain et lave and the mineral to wet.	10 1 10 1 10 10 10 10 10 10 10 10 10 10
1330 left Rice 1 for lay lend ?	1420 Metted Stery Stery act about time to now! back or also — left mossage of be out at office in mossage of be (Allow merus)	Huntingles 7 Cours Steve 21 Steve 5th E week on Site 21 Mind on Site 21 Alread ("Clearled 0.5 - 2.5"	1755 We Wested Sangele 021-52281-15-7.0  2.5" VOA TOH: C.C BTEX X6" SUSA PEST PLD DOPN Sleeve 5777 (60 Specum) mette

no orti 1600/ 13-15 Stemal wand little minit lare yellowio

7 mod 621-02164-6.0-TPH 1 750 Collected Surple 021-02/184-25"/ 5001 Rest (1, 1) 15-0 Con - C. Such the think the chapter of the grand to the control of the such that the sum of the control of the God CC-BTEX Salet; Inace 111the Clay, I wante to colobe poet; fun. redum reidion - yellinish 13/81/6 0,5-2.5 Silt 1 wee clay athy Victory Bus metals 2.5" Kb" Kbusa Kleense 2-7, 1-02/8/1/ 5-2.5 Acteure Started 021-0218 Collected 0.5-75 % Recover The gent of Himtingon, OPECH

14/10 19/10 Lathy Rithy 25 Soften Kathy Rithy 25 on Side 2/ Lilling	Lected 021-6 57 57 25% 55% 55% 55%	Story Callected Surger 521-020811-1.5-  2.5 NOA THI CL - BTEX  X6.04 NOA THIS  Story Con BTEX  Story And North to soil bound due to poor recovery due to	1520 PTD 1.8 Pm 1520 Material 5-7 (Anterward 1520) PTD 1.8 Pm 1520 Pm 1520 Pm 150 Milested 5 ample 021-0708H-  2.5 " WOA TRIH 601-0708H- X6" Sloop Pest 60-6.5"	13
15-17 Seet 13/94 15-17 Seet 120cc 10 lettle ND 2004 Inece youred; ND 200-6/10 yes west Oder from , hadim readion-	171 1 30	1155 1155 Method Townson Course to the point of the point of the course to the course of the cours	1330 1330 1330 13 - 40 ml. Voa Vials  830   2 - 40 ml. Voa Vials  830   2 - 40 ml. Voa Vials  830   2 - 40 ml. Voa Vials	1 C mestales HND3 Kathagi Paturel

9-11 Six : true gravel	When publication out the solution of the fittle out there.  [1555] [o-letted 13-15 leng.	1605 (MOTH 7-19 1-520" 1-020 8H- 1605 (MOTH 2-021-020 8H- 145-145 X.5" (SYOA POST POST MOTH 145-145 Swood Metals Only not well on	Sill was Physical to some to sure to some to sure to such the south to petitle and the substances of south the south them wet in	në duim reddish - yellowish man ; turo cler tuty (tet)
16 7/13/94 Lace Clay, Trace of the significant	modern hedeur brown 5 Silt 6	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Love frew from from the frew for the frew from the frew fr	10-11-01-01-01-01-01-01-01-01-01-01-01-0

Thursday 7/14/94 29  Thursday 7/14/94 29  (36 "C) highs in 40 2.  Too Feeth Neethy Intelest  Or sie et to set you.		755 Started 021-01984  360 (collected 0.5-2-472.0)  605 (collected 50 28-01981-15-18)  255 (Swood forth 021-01981-15-18)  255 (Swood forth 021-01981-15-18)  255 (Swood forth 021-01981-15-18)	Stown Pt 0 1.4 ppr
15 Shiped (1) equipment (1740) Shiped (1) equipment (621 - R661) Paril sumples and (1)	1815 OPTEN Lath Middled Act Side Towas at Side All to Side Side Side Side Side Side Side Side		Kacho Patract

0.5- Savel at Sille little 2.3 gravel pelale-colle	Surve of and be year	16-7 (east and sult little No frim necessary - descri-	9-9.2 Same can 5 10, some	9.2- Seltwie Coup 1, 2004; 10.3- Sand and gramelo 2014; 11.0 Lest , 2000 gravelo.	wed and sold	13.2 - Sond end granne e sime sitter 15.0 - Sond end granne e sime sitter oligitan west beeft thin hadring
30 Calletted 5-7 (	815 1.6+1.0 1.7 pom 815 1.6+1.0 pom 2.5" UDA TOH X 6" SVOA POST	13 23 30 36 100 Charachy P.I.D. 1.8 ppm	8 32 Collected D21 - 109 - 105-1183 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -	nothb Collected 22 19 20	tradiso 21-01984-14.0	Kath Putchet

some sund sind polle Sitt i betle - Done
gravel circlete sye ittle
bot; firm trace - little
clay have yellarish brown
Sitt we soul inse gravel, sellele sus mitty france misst durk yelnings beier In some gravel. ditte clark rellinish brush Silt i same Titchet Sund and 5266 7/14/94 dark yellowish brown able sie those class is 100 colul us no 2.2-51-11 Collected sort-815811-6.0-VDA TPH 6.5 SUCA Peat GC-8TEX Metros Do mot collect due to showe he kea 5-7 6c-8TEX 920 willested 5-7 6c-8TEX 920 willested 5-7 6cm GC-BTEX 905 Slocted 071-0/1.8H 910 Collected - D. H. - 2.5' 30 5-0 40 40 0 15 30 (Receivery 16/1/1/E metalo SVOLA SVOLA Me Feea 946 13/16

Suct some sand 35 most -ding letter gavel, peoble no love, duly	silt trice - lette sum.  must - little  france pelibe: me i  france pelibe: most - list  france pelians incom.  Tite truce class  france ound little grove,	petro-le size, fum, miss - chy decdase in sand decorrect dark yellowish bruch - mediun yellowish redesis ster, trace clay;	little to sure grewel,  tobble six fim  net medin to take  yllowish brown  Sume as: 9-11
114/94 ted 13-15/ 1 15 % Recovery	21-618 34-14 TPH Pest 61-8 Depletate 16 8H-14,54	oted 1212 1313 150, 150,	50 500 metals (1004 CC-87EX  1045 Calletted 5-7  1045 Calletted 5-7  1050 Calletted 51-7  1050 Calletted 5-7  1050 Cal

37 mete 74 /2/11/10	ed 021-015BH  lected + 40,5-15  [1] re & Recovery  0 pm  5 0 pm  4 Simple 021-015BH-1.5-  1794  20 5-25	6 80 "Recary 1.0 pp. 0.1 pp. 0.21-015 BH-6.3-  Total 2 Total 3-175 6 Receiver 3-3-75 6 Receiver 5-3-75 6 Receiver 5-3-75 6 Receiver 6-3-9 pp.
Loslotted 7-14/4 3 1405 D21-R B0/ 82-40nd (BA SUCA ROLL) 12 SUCA ROLL 10 1110. DOLLOS	Collect Collec	Collection SWA NET COLLECTION SW
	2-15 (130)  Cecured north 1430  Coursed north 1430  Coursed north 1430  Coursed north 1430  Coursed north 1450  Coursed north 1450  Coursed north 1450	2 CILLLECT 2021-016811
7/14/94 9-11 (Western 9-11 / 9-16 22 23 702 Recovery 8-10 18 ppm ATHS 0.9 ppm	Lorted 13  Lorted 13  Lost 1255 C C  Co 4 PP Pr  taxt 021-0	Dullers gratered to lide to learn to though the post of the second since of the less of th
36		1245 1245 1830

39 H- 10.5 10.5 4'	f - 14.0 TTEX  Aut.  bue soly	(ms)
10158 10158 10158 13267	1 02/-015134 - 1 02/-015134 - 1 (3.7-14), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17), 1 (2.7-17),	Carry MS Williams Barry
7/14/9/ 100/2/2016	15 0.5 P Society Con Society Con Cantonda f Call - 019	ped (10) ped plicate (1) the sal (1) the s
Collects Netres 10 22 6	Cultered 021-015BH- 100A 100A 100A 100A 100A 100A 100A 100	Shipped (1) Duplicate unsette a la Bul +
2007 = 830 2007 = 830	2 10	
25.5. 25. 25. 25. 25. 25. 25. 25. 25. 25	S 40 X6° Steek	1800
me mule m	se) le 26 Unior	
Las de la	trate trate	
26 19 19 19 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	o see the seed of	2 rating
Sin the same of th	brown reduced for the control of the	# Sch
Jan		2
35.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	13-14 13-14	

7/15/94 Male classiffere from from from from from from from from	yellowar belan Silt little - some growel, colobe 272,	ist - d dium diwah	Siebt dittle to some sand from wet,	yallande Some as	true grave	2 2 5 6	yellowal brown Kath Patclott
	OPIECH ( Ruleben Towns)  S-7  Collected Equipment	VON 5- 1/2 nd 11/26 //26	1-2 1-6 9-10 TPH 12 1-10 MOSFULD 12 1-103 CHATCA 021-017 BH	lected 0.5-2.5 9 50 hRecovery 0 pm	0-7-91-H9t	Burn hotale IFT GC-8TEX 15 Spiene Collected 5-7+1	PITIS O PPM KEEN PARTUME.

1635 Stacted 021-026my 1037 Calletted 0.3-25	Collected ON	1050 Collected 4-6, 4 1176, 10% Recovery 1055 Collected 021-026 mw- 5.0-	1105 Collected 7-4,	Le 34 Collected 65 BTE		CC 67 PTD AT#5
42 7/15/94 -0-1-0/78H -0-1-0/78H -0-1-0/78H -0-1-0/78H -0-1-0-1-0/78H -0-1-0/78H -0-1-0/	near Collected	110 Collected 9-11 12 20 26 35 95 % Recovery. 010 0 pon ATHS 0.4000	915 (Metetell 021-017BH-10.5 2.5" WA TOH 10.5 6"Blood Subst Post Co.5	15 Collected 13-15 (Second) 14 21 20 23 85 "Recovery 15 10 0:1 ppm	930 Culletted OLF 0178H - 14.0- 2,5" Yor Rest 14.5 X6" Svo.A TPH 6C-8TEX	950 Diuloro grantad 021-0 178H Kath Patileu

- 2	1745 - Storted constructing 1335 - 11,00 from 1335 - 11, deated particites	1800 Finished contrate outsell constitute of med to paint sustative - naced to paint sustative - height from a steve -	t back ett e -(- x be th	and simple 1 (1) duplicate.  a. (1) equipment sinserte.  vir) Fedeliet Expess  (ii) Bill # 3   76 0   4034 -    Keth Parlott
44  2,5  2,5  Silt and Sand  2,5  Levise  dy dark yellowish	Mr. 7-9 Peut anne siet.  10-12 Siet bitle ganel.  Deuble sysjinet.	15.5-1 Sult - point Jume as 17.5-12 - collecte		Kathy Patedow



975 Talkel to 7/12/4y 49

12 Talkel la linderson
Encionmental Protectal
and up Howsham - success

14/6 a rew filter
Author Howsham
Softenseid Fort (SPLIUS)
to chart if sumples
have been received properly — no problems

I only one water bottle
hul broken during shipment
but they were rule to
retrieve sample from Called Norman of the light of the the were finished with the said of the said of the said of the said of the hotel number for whether me, at the last hotel number for last hote 6.0% decontinuation areal Tasteumination areal Tasteumination Determination Porter So S W. Superia St Dulith my 55802 (218) 727-240-2277 Bollow Turner Sold Bollow Turner Sold Bollow Turner Sold Bollow Turner 48 orender 7/18/94
Weather: Summ, mid 6/10/100 de Byd to set yo Find Fychan Kullup Prituerd out Sile 21 to mace Huntingen Ed E - Stend Stene of Jim Saugestal athy Taichett Ruben Torres Kathy Pithed Towns

	1/10 Collected of Frolest Jours  25th SUBA 15- 12th 2.0  1,5th SUBA 15- 12th 2.0	1115 Centected of 4-6 (Rewer)  122 35 80 "Rewer)  125 ATHS - Por Directed  1120 Collected or - 01684 -  2.5" / Subsected or - 5.5	3 3 3	SVOA TPH Kitch Pierret
950 Called Both Caway	Gadisan Horel & Lett message of phuse number to be the Capin today.  155 Huntingdon Ed E  Churred of Mingo 103	1035 Herringen Ev Elmyen 103 Stre 3 time of Stee 17 Jin Saugestad of Site 17 History Steve Steet Steet	OFTECH Chulen Jack OFTECH Chulen Jack Neeting Say Recting Say Rect	Te 75 6 Rewro

Collected 0.5-2.5 / 22 10 60 24 " Recovery Fortight ATHS 0 Ppm welested 017-0158# Stated 0/7-015BH 5,5-6.0-5.0 66-87EX 10 17 1 & 35 % Record Meted , 9-h the Prices SULA GC-BTEX Collected 870, mod o o ppm SVUA Cocleted 3335 PTO 0 olletled PIO ATHS 2.5% " 1210 Shill Ziri Kilori Kruso Seerk true - Little coal ficte gumule, love time freme from met Sand arel Si lenda in mist illy Surg and 1.0-H 

Mallutan and to 5theted 017-013871 deleted 0.5-2.5 5 17 60 Checaras the CC-13TEX Did not collect due to poor ppm ppm PPM-101 olletted 017-01584 GC-BTEX Pitchest 80 . Cheway 66-81EX 11/5/16 murlastorm selected 5 Calleted 3 667 ATHS Culletted ) s) NOA THAT Vac. Tot-3557 13/0 1325 yellown Lare old and Sand grove ; cal 46/8/1 E 2 20mg Call Of States 01-6 rubs, an Pis, orden 2.5 7.7

d when a clear 11cd -800-337-0435 remple Bottles Li dubby in clear granduate purges 9/18/94 1 6 amber (3)40-nl Trip Elant 5-402 unter For 11/200 metale VOC Post Voc TPH JUNE 0,5-2.5 ' acil boing 017-013 017-013811-1.5-20 nedlin - dank 90 of Recovery collise sie gent bran , 7/18/94 dark yel SVOA TPH SKLL pend 07/11 0/-7,5

4 Mally 29	per l	getting wett in a sudden thirdestrorm at	out the meretine traped	To tomonal deliving to assure in have beginning	Shipped (6) subsurgered soil samples (9) ms/ms0, and (1) equipment rimsente.	C Yours wermynt delivery, an Bill #   (CCh, Prixelett)
[615	1650			<u> </u>	1.30	
58 7-118/94 500 20 4 / Challer of Challer of Clarker of Clarker of Challer	100 Site 18 DA/QC 2000 CD 2 (3)40-me viet	TPH Order from Labor HCO meters 9 / C clan HCO est 1 / C psa HNO3	1600 Called Karen Sateracied (55% Cel.) ordered the	Ter Tere	Contract # (39,7 22.	\$ 150 link \$ 85/all for 24 \$ 150 yearing fee if key for 24

le Haplo-fl 17-014 05 5-2.5 65 6 Remen 6 6-137 Ouplied ted 8-10. 4/18/14 0/4-014 111-5. 19,53 977 Losllacted 27 27 838 2.5" X4" んれら Meden til Namer 10°3 Fad Explan Kathyn mouning. Eather Stone, > inel the for the 1 (19194 Kin S 2620 Called rulcont Cal Weather: OPTECH Herry M. J-80 735 750



A-111BH- 9,5-4.5 651 undingly, ELE decentamina GC-BTEX Started 017 - 0118H
Collected 0.5-2.5
64044
PLD 0 0pm HB110-FIS 86/11/1.E (010) 1.56 1625 2.5"X 68202 1010 c), 0/ obile cets 4/19/194 trota Sitt Miná Come 9--5 10 Judin 1-10 10 Table 759

69	Ser.	0BH 10BH	100		Š	1 5 5 X	200
La C	Charle with Bruce being Buse CE about willing Clearance:	612-01 017-011017-01 Started 017-0	10 b 40 6/2 PIO 0.3 pm	103	Collected 4-6 Laney	Collected 087-0108# (SVOA) 087-0108#	Collected 0 17-010 B) Duplicate 5:5
1/30-	1235	1320	1330	List it	(335	1340	1345
Silit , Little stone,	Trace - little clay; buttle punch; pelyble  aye; hioto; mist-dy,	Sitt and Part meduin grey burn ; soft in most i truce - title	Selt and Part belle clay true gravel ,	our medium gay	are lettle lar house		Kifoth Priture
0 S		-52-57 -5-2-57	4.6	8-10			

Filt and Peet 69 silt and gray brown for yellewish burning maint week; fuite	Little - we prove in the cutte of the cutte of the colore	Hathy Purver
1350 ATHS 03 PPM 4-5 1350 ATHS 03 PPM 9-5 1350 ATHS 03 PPM 9-5 1350 ATHS 03 PPM 9-5	145 Collected 0.5-2.5  (collected 0.5-2.5  (ft) 2 Rement 10 por ATEX  (14.5 Collected WAT-6/6811-  Oit not collect  due to jeus record  try to duing 0.2  pried 2 defends  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{5})  (-{	Harry Michael

Sitt , truce cly 7/ fruin moist - dy	Die der yellanier Silt hittle zune frankenter bittle mast du sein	Peat how yellewish has beaut needelin minist, word to main maint, word to many maint,	Pet me sit trace clay,	fuche in Patrick
7/9/94 5-0/764 0.5- 14/15 Stuted 0/7-0/764 0.5- 14/20 Collected 0.5-2.5	1425 ATHS 0.0 ppm 1425 2.0- 1425 Collected 019-6178H 2.0- 250-255 2.55 2.55 2.55 2.55 2.55 2.55 2.55	1430 Collected D/A-0/7841  50/0A  50/0A  50-87EX  1415  Collected 5-10-	1145 (welletted 0/7-013 & 4 5500A  (TPH 62-013 & 4 5500A  (TPH 62-87Ex	Kach Friedet

Wednesde Weather: should be

7/20/9/ 75 ///0 Started 0/7-0/8 84 (vollected 0.5-2.5	1/20 Celected 0/7-0/584 500A - 1,5-2.0 500A 66.0 - 87.EX (125 Collected 4-6/6/ 87.EX	133 Calletted 0.9 pon ATHS 0.9 pon ATHS 0.9 pon Sie - 0.8 BH - Sie	1145 Calental 619-018 84- (145 Calental 619-018 84- (200
74 Start during 021-026 med (Case Temp. p. # Cond. Claich (Case Temp. p. # Cond. Claich (1)2 6/12 6/10 6/10 Claich (6/10 6/10 Claich (6/10 6/10 Claich (6/10 Clai	12 65,4 6,32 764 cd 14 65,8 6.45 636 Cd 18 62.9 6.45 636 Cd 18 62.9 6.45 635 Cd 18 6.35 7.2 2.2 59.1 6.85 635 Cd 18 6.35 7.2 59.1 6.85 583 Cd 18 6.35 7.2 59.1 6.85 583 Cd 18 6.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7	なったが、サナガル	1055 Muslimper Steve Steve Steve 1055 asternated Steve Steve Steve 1058 - no elegand on the remaining on the remaining the stevent of the several stevents.

18610-40 Collected 0 17-019 , tailott 7/20/94 collected STOA 1947 List (Antingan 1230 0/2/0/2/300/ roots Logae 4-6 01-6 6-8 ,0, 1.5

0.5 - Silt, roots, mait-dy, 29 1.0 true dy lossa; trace suld trule	1.5 - Sitt ame ged little soft wet little	Jank yellwing - grey 4-5 Sitt Wille - sime 2 July parale sign - little grand parale sign - little grande sign - little	5-le Litt fermie est sons of s	grand; seleble and frim
76 7/20/11/ 1370 (orlected 6.5-2.5) 3 3 5 8 50 8 lacover	(333 Collected 017-01964 -  (5335 Collected 01-6  (335 Collected 4)-6  2 3 7 10	1546 Wester WA-619814- 1546 Wester WA-619814- 5500 Solderted 8-10 8 14 12 47 Cheurs	1355 Lallested Por -01964 SVGA -9.0-9.5 SVGA Lact up ment in due juxting	A Oath Puraner

peak hour some s medium - dark gry buun ; fr siet, trace clay;
bittel parel col hite same 7/20/94 Sund and go mist - w 1-6 \$ \$ 1.0.1 Started 017-020 BH 3759 75% Reway
3759 75% Reway
459 75% Reway
1044 PID 0 1/02/6 NEW TEE 1950 cs/11

OPTECK aweeling The stone 7/10/19 2220ct 1600 1730 with methand unae with patance winter, lines with elevinies reel polit and a supply of the supply of was esaul with in will in decontamin Z sold through potable water ringe with 4/20/64 fallaring of Luidno the otamberinae' Str. 19 Ath nater spoone ! been maed The following Lites abore Dillas dugero

2"K5" plastic unal with nethanol in day set was with a seleminant toil ( whim, following procedure of the south with allerast Change clutter and vait for hinse with potable of outsimpare voil samples with collection potable water Reiming too hald to ath Pitchet Decontaminating diaso sleeve it 7 hilly side act water; weatler to clea himse Raining chowers on continue 348 1005 915 060/ - he is beluth on var Themodou, 7/21/44 meth (Dhmb) at Site 18. an work. O Weather; cloudy / Side 21 that wa OPTEU 835 800

15/0 (eft Hayer 103 1550 What to William	Ardustrial North to Devidace (5) boles of Nitrice years (105 Pace) and one pair as north yearse for for hoe Engly	1603 Went to The Viapar Hay of the phase Hay of the photocopy field noted.  Of has been vely difficult finds madical one one	hotology (55) payer of hotel notes before mobile notes occurred with the only windalede wanterie. I 645 went to Minnewton.	1710 But at Hotal parentes.  The deal manage to allew he to use their upp matrix.  Aft several attempts.  I constant part to and the impossible to attempt.
86 7/21/94 1315 anned at Huntingan ExE to pick up	\$35.50 deignigal water (\$ fallows).  per hundlingan firmshed mowing  Syallows burneled at Site 2/  Syallows to dosignited wan behind  [3147:240. for Eyra, f	1350 Culter Tous and Kuthyn Pristact which a Hugen 63	1500 Called Act of Stone Stark Churtinger) to color additional 55- juller dum for 621-026 ms	1505 (alled John Morais (OPTECH)  1505 (alled Viking Industried  nitible 430 47 #6 & ant are and from the order  quare 430 47 #6 & ant are and from the order  quare 430 47 #6 & ant are are and from the order  quare 430 47 #6 & ant are are are from the order  quare 430 47 #6 & ant are are are from the order  quare 430 47 #6 & ant are are are from the order  quare 430 47 #6 & ant are

herent into 500 ml
poly bottle preserved
with 41/10s
photo of collected sample
021-510 my PID=0 po Wellected O21-009mw-MA (4d 6wo/, motelo HNO3 week_Efer irchett Collected 12 cl 1-610 me (U, L, -6.86' 7, TD - 17.51' 7, VX3 = 17.51' 7, 4/21/4 himaecte — 16 621—1809 45 nd 1814 54.6 5.83 1530 - 45 mg 000 1 - 1 - 1 500x 9.08" = 1.5 galo 7 h = 9.08 600 Ruben 1/24E ഗുര, mexturd Weather

		arte his	100	No files	70.00		YOU THE	¥35.7	3 P. 75 S.	10.30				
125 021-026mw 91	(8. 2/ TOC) (0.22' TOC!	63) (12.01) = 2.0	Started bailing with 2"	eat	7.31 751		(6 62,5 6.99 (103	1/8 (01.9) (6.82 // 20 (01.5) (0.79) /	22 (01.5	(60.4 (0.75)	28 59.8 6.98 408	1 + 33 (66)		- Coly Purchase
		:		$\approx$	72	()		~	- "	) \ \ \		22	7	
tacted building wais PVC	Salo Tenp pH " Cond. Clause 5 6032 5,89 734 cloud	6.5 59.4 6,18 721 doudy, 8.0 56.7 6.35 681 doudy	1 6.43 670	Stopped bailing per	- 40 0 404 Hill Bass	metalo	Collected 1 & clean for for	act then decast into Toong	He Joseph pre	Collected duplicate	04-010 Amy-640)	Temp. 12. to 100 Claving	(01.4 6.76 783 Lyndy	Kath Katuat

02/-01/ma willected - clon Nox W.L. KINI Dirini 1555 1553 1553 Zezz (DRMO) 55379 373 contectors × × ′ Shakopee his Products ((e1c) 445-4610 Minneapolis, M. south out the 1-500 ne presedo 76.4 (allected noted for ath Pieuas 600 -mg 301 1320/36/



1355. Collected 0/8-00684
Steens CC-13TEX

440

Collected 1.7-1.5

100. Remains

7TD: 0 for

ATHS: 0 for

Collected 0/8-00684

2.x 5 ff Collected 0/8-00684

2.x 5 ff Collected 0/8-00684

2.x 5 ff Collected 0/8-00684

2.x 5 ff Collected 0/8-00684

155 for

Collect perimat

Collect perimat

Collect perimat

Steens

Collect perimat

Collect perimat

Collect perimat

Collect perimat

Steens

Collect perimat

Collect perimat

Collected for

Collect perimat

Collected for

Collected 7/23/96 Started hand augus

018-00784 "20"

Collected 10"-20"

190 ppm

190 ppm

Signature 10"-20"

Soft three grands

Collected 018-00784

Collected 018-00784 PID 90 ppm ATHS 57.2 ppm 100 4. Kewing Collected duplicate 6/8-007 BH-2 Started 0/8-00684 VOA GC-BTEX 4/22/94 PID = ATHS: 405 2 " x 5" Bross Sterre 7 -9/6

4/2/1/F	1330 - to lement to lund 1500 But at Hamper 103	to take at unland truck	1630 Shipped (1) Milsenface 201 Sangle (24) from 502 17, (4) Junque soil	(1) dusteaste (1) mrs ms)	ms/ms) 40 Let	(655 arrived at Hanger 103 to reorganic supplies and upace Food explose.	1800 lest Hunger 103 ga'the	Tath Rivert
16/62/2. 36	august down	and augo n bross steer Collected	Show NOA Pest Show NOA Fest Show TOH GC+BTEX	VILLO Collected Ouplicate  041-0053D  725 PED: 0 ppm	USA metala WOA Pest	- 2 m	SUDA Methle SUDA PEST TPU GC-817EX	ATHS OPPR ACH PACKED

/c,					
	Sanple (2 55, 2 55, 2		Saple		
14/12/E	1 Sam	t firsation to the start of the	Luta 2 Surey Soven	einsette	Litable Pritable
6	130 lmy2 000 004	molitate molitate molitate mis king ricka	unter-level Pictures & Sediment 021-0045	021-06750 2A/QC Equipment	This Blank  This Blank  Cal
	20/0/2/2		रेट्ट रेट्ट रेट्ट	1000 MI	3,512
-		Na D	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	21/1/	0
124/94	Thenth (7 (1) ctivities	55 55 55 55 55 55 55 55 55 55 55 55 55	25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25 25,25	i wwyg	2-12 water Lay Survey
7/24	25.23 25.33 00 25.33	M W W W W	wwwww	, , , , , , , , , , , , , , , , , , ,	datas eined w 4 was Cl
	Checkus Children Later Children	01084 01184 01184 01284 01384 01484	017-0153H 017-0168H 017-0178H 017-0188H 017-0198H	DA 19C Equipment Re- Dupliester	water - Deriel of Nover of States of the amount of the comment of
001		1000	017-0153H 017-01601 017-01784 017-01984	Dry Dry	X

[0]	55 2 / 55, 2 V	55.55 55.25 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35 55.35	55.35	5,7 5 s	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	whether	ANG	
12//94	Scheen S		2222	4 3	Cinzetta	me alias	\$ \$ \frac{\frac{1}{2}}{2}	Trindett
1/6	1 Bours 0153H	17 BH 14 BH 519 BH 520 BH	521 8H 523 8H	025 BH	A/4C Supriest	Try seme	Stung	是
	2 - 40 / 0 - 40 /	104-01 102-02 1021-02		102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 1	7 7	73		
	ollog Schar		1 200	- 01-026mm	leth - paint nit	:		
7/24/94	\$0 -	Linabertia	nt blank desta	gre f	ller to conflote construction—post + ID	134		whaleut
	Burn d-water 02 1-026 mw	021-010 my Oll-014 ma quignent		Seite Court	super full	his burn	<del>/</del>	Last P.
79)	7/7/	) And					and the second	

LUNEYAR from June Survey had only calculated elevations well over site with 7/12/14 Sundano Lux DIS O PM MIL. 7.86 TOC Durving ant latting T.D. 20.22 V= (0,162) VX3 = 6 Calibrata 905 8 104 Nondy Sumy Hy 500, Leaves binny, Hy 500, -45 ABF Freight Sithers 727-1767 afternoon relassion of the be delined to this in Sharespale, made at six to pick up an both at save the 240 to order pick y at Buse Bed glar at 1630. They lan Kach Kizulad deliner intr The Can not air bottle b (2/0)

76/21/t	W.L. data	W.L. 7.86 70c	1.D. 17.19 TOC	W.C. 4. 4.00 th	8 2 - C	1.65+ 1.65+	1.D. 19 42 TOC W.L. 7.96 TBC	TD, 14.82 TOC	)	summing (KKCM)	ans	to contact man.	ey to find out if the	K Hy Duc and	PID -> left masoage.
	Siste 21	L	··		11.55 02/-013 Pm U	-009mul	(207 521-6/4 mu)	1775 Pom to Simil	drived	neet	Celebra	Earston Co	*	Leed Ceed	Mc Can not
<i>b</i>	Lingthi			+	6.42 Section 3	٢ (ورود) روسي	7 6,65	0 6.63 //	86.64	5 6.63 (W.C. 8.96)		- 056 my -		the out for	clart into 500-
4/154/6	Conductinis, a	PH 7 Harden	pt 10 unn	2" PUC	51.8 563	1.85 of	14   56.9   9/4	16 57.6 103	20 40.0 110	22 54.4 110.23 Stoped sum	59,3 (193	VOC HO	e foly metale HNOS	respected 12	notello then of
991			<b>(</b> \)	345	9001	250	020	037	25/	956//	///5	3-401	1-500m		_

1430 Collected Equipment 109 minecte Ette 21 2 - steel Mauge 13 sediment sempling	3-40ml 100A H-CO 1 1 cmm 500A 1+CO 1 1 cmm eax 4CC 1 1 2 TPH 4CC 1410.	(45) juneya already seurezed 530 Este 15 - of site 17 530 Site 17 W. 14 12	1545 Went back to Hungento park 314 17 Frights	430 anned at Brace Shipping at Regions to ship (1) lange but to ship (1) lange but (1) were worten	(1) hand augh ket
188 Dite 18 W.C. Deth. 1355 018-005mw W.L. 7.46 700.	Mos 0/8-004 M; W TID Pom TOPC TID.	Old-medsing not take heard had had been and had had been and hear the protecting	lare le	of the H	3-40 nd vorg 4400.

Hunger 103 for Hote 19/54 t Restumed to to clean ux and 508, rb/syt and Receiving Welete blenk lake 1755 37

815 Aformed Thosan + 126/84 113 Recaining at alex 240 + 124	920 Huntingen at 1400 by Huntingen aff site 2/ - Linssed moring burele. 930 Met with Capit Steven	wherevery to war sites 21	1015 auned of white lapt.	1140 Dupped Cypt. Selen ustravets 1140 Dupped Cypt. Steward 1250	, <del>(</del> ) [ .
12 Theoday 7/20/44 12 Theoday (load); winh; histomics in moth Site 17	The site of the personned of the state of th	eleve deta 5 weaks, 4 tuntingdon duillons to		Infamed Here Stelle the following: Soil boing 017-013 BH 017-015811 and 017-0178 H	ned to be painted.  The I state need to be oldered.  The painted in 021-026 my.  The Painted in 021-026 my.

1235 Called Northwest divline 1345 Contact Paul Washer	<b>E</b> 7	124 plastic upo, q U) 24 plastic upo, q U) 201 basket upo, q U) 505 Finished deposing of 60 sucen soil somples	15 16 (9) (9) (9) (10) (10) (10) (10) (10) (10) (10) (10	1515 021-013 PM W.L 13.3570C P.d Perme 7.D. 7.3570C
55 Arwined at the decignated are the start, need to	into soil for 60 avening - left the stark and barnel.  I could not remove	at Rudioson Hotel by Ruben Torres  to deliver him to not to be extent a flight to the Huyward	· -	4 )

rein to fee

£100-X

1515 021- DI3PM W.L 13.3570C T.D. T.O. in compast bured pe Site 2 1235 Celled Northnest Willing and sample north of stelly GC sueen out samples 24" plestis cupa, 4") sand broket. Sepaing of inform him of Site 1 THE GTEX 21500 attoin to rearrange flight Contact Paul Who Logged burnels a nivert 7/16/11 methored 24" plasts K tacher P. 1345 anised at the dearmeted 古 (atch ) A (OPTECH) / outeth tombried famoura moroma Twee Jety Farker ariana to to pick up made the wiport 7/26/91 annied a project OPTECH!) 907

hoenix ath: イをことされ Goods Shypred hangh 3 bex es premons / but 4 horse 17-05 Successing Minor 700 0061 (by Decon ,00/ 11.88 to 2 1084 1867 JM 410-160 nw 900-100 2010-1160 12811 Hagi 19210-1160 1009mm O11 11 11 10 1934 WAR 1527 July 015 1817 1820 069/

wednesday 7/23 8/1



							_	_					_												_					_						_							_
	10 h	r co	0	_	64	c	4	S	9	^	8	6	3	=	2	5	=	5	16	12	18	5	20	2	22	23	2	52	56	27	2B	2	e -	5	35	33	픐	32	36	37	36	£	9
	6		1.4	29	4.4	5.9	-7.4	9 9	10.4	1.9	13.4	6.4	16.4	17.9	19.4	50.9	55.4	23.9	25.4	26.9	28.4	59.9	31.4	32.9	34.4	35.9	37.4	38.9	404	41.9	43.4	44.9	46.4	47.9	49.4	50.9	52.4	53.9	55.4	569	58.4	59.9	61.4
	8		1.2	2.7	4.2	5.7	7.2	8.7	10.2	11.7	13.2	14.7	16.2	17.7	19.2	20.7	22.2	23.7	25.2	26.7	292	29.7	31.2	32.7	34.2	35.7	37.2	38.7	40.2	41.7	43.2	44.7	46.2	47.7	49.2	50.7	52.2	53.7	55.2	56.7	58.2	59.7	61.2
	7.	Stake	1.1	2.6	7	5.6	7.7	9 8	10.1	116	13.1	14.6	16.1	17.8	19.1	50.6	22.1	236	25.1	992	28.1	59.6	31.1	32.6	34.1	35.6	37.1	38.5	40.1	41.6	43.1	44.6	46.1	47.6	49.1	50.6	52.1	53.6	55.1	566	58.1	59.6	51.1
	9.	Shoulder St	60	2.4	33	5.4	6.9	<del>7</del> .	66	4.1.	12.9	1.4	15.9	17.4	189	20.4	21.9	23.4	24.9	26.4	27.9	29.4	30.9	32.4	33.9	35.4	36.9	38.4	39.9	41.4	42.9	7.	45.9	47.4	48.9	50.4	51.9	53.4	54.9	56.4	57.9	59.4	609
	5.	Side or Sh	9.0	23	3.8	5.3	6.8	83		=	128	14,3	15.8	17.3	18.8	20.3	21.8	23.3	24.8	26.3	27.8	29.3	30.8	32.3	33.8	353	36.0	38.3	33.6	41.3	45.8	44.3	45.8	47.3	48.8	503	51.8	533	54.8	563	57.8	59.3	ود) 19
	7	out from Sie	9.0	2.1	3.6	5,1	6.6	8 1	96	=	12.6	14.1	156	17.1	186	20.1	21.6	23.1	24.6	26 1	27.6	29.1	90.6	32.1	33.6	35.1	38 6	38.1	39.6	41.1	45.6	44.1	45.6	47.1	49 6	50.1	51.6	53.1	246	56.1	576	50.1	60.6
	Е.	Distance out	0.5	2.0	3.5	50	6.5	0.8	9.5	11.0	12.5	140	15.5	17.0	18.5	200	21.5	230	24.5	26.0	27.5	53.0	30.5	32.0	33.5	35.0	36.5	380	39.5	41.0	45.5	44.0	45.5	47.0	485	50.0	51.5	53.0	54.5	56.0	57.5		\$ 60
	2	Dist		18		48	6.3	8.2	93	10.8	12.3	13.8	153	168	183	19 8	21.3	22.8	24.3	258	27.3	28.8	303	31.8	33.3	348	363	37.8	39.3	40.8	45.3	43.B	453	468	E 84	49.8	51.3	52.8	513	55.8	57.3	53.8	6.03
:			0.2	1.7	3.5	4.7	62	7.7	9.2	107	12.2	13.7	15.2	16.7	18.2	19.7	21.2	22.7	24.5	25.7	27.2	28.7	30.2	31.7	33.2	34.7	36.2	37.7	39.2	40.7	42.2	43.7	45.2	16.7	482	49.7	51.2	52.7	51.2	55.7	57.2		203
i	0		0.0	1.5		4.5	09	7.5	06	10.5	120	13.5	15.0	16.5	180	19.5	21.0	22.5	240	25.5	27.0	285	30.0	31.5	33.0	34.5	360	37.5	390	40.5	450	435	45.0	46.5	48.0	49.5	51.0	52.5	540	55.5	57.0	585	900
į	ا اا	DO F	0	-	74	6	4	'n	و	^	8	6	2	=	21	13	7	15	16	~	18	2	2	21	22	23	3	52	56	23	88	83	8	<u>.</u>	25	8	3.5	35	36	37	38	S	9



Name Joe ByRd, JR
PRoject Scientista
Address 4100 NW hap 410, #230
SAN Antenio, TX 78229
Phone (210) 731-0000 1-800-6778072

Project Delluth 1308-101 CAPT Stephen WABREWELZ 148 F6/LGPT Belg. 240 4625 Deuce D. MN 55811 (218) 723-7475 "Rite in the Rain" — a unique all weather writing surface created it alockwale covered to write in any kind of weather. possible to write sharp, Ligible held data in any kind of weather.

1. DAITHORNER J.L. DAITHORNER TACOMA, WA 36421-36

)	15261							
187 1000	Senion 11/2 Jaly		1848 At HoleC		J. Chr. X.		AIR Products 373 CANTERbury Rd. SKAKOPEC, MN 56379	
CONTENTS	PAGE NO. REFERENCE DATE  FEBEX 1342-6486-1	HAZCO 1-800-332-0435 SCOTT ROBINSONS AIR PRODUCTS (415) 961-4560 WH 116 (T5509) ADDITIONNIA	5.2	0+ rum Beh 210-731-0000-6335	RADISSON HOTEL	D, M, SS-802 (2/8) 727-8981	Plik TRoducts (612) 445-4610	PHOTOVAC . PASCAL (516) 254-4283 . AOBERT



Auge on GC 15  My proporty. It is  The psix instent of 1500psi  The Alexander	eR. B 34016 obus.  10	They down wood  They down wood  Myth Alekander	KP, RT. 60 to B103 emply of MR. Trank Time 12 20 20 lang before	111th Alex Ander. to sond it back. HAZOO. ORDOR New
HIR THEN GAUGE  NOT REAding  1330 CALL MATE	NO ANSWER. GG. RETURN to Aide (345 Legue 13)	1400 At 5, te	1420 bet KP 1440 GC 13 e Ref. LL 7 See how	
Set guip ment. La unland At Blag. 103 to unland equip & set up 62 staff	Ur pAcking equip ment  KP ARRIVES At B. 103.  60 to hardware store	heque hardware stores  66 to BASE to SKAKe  out AREAS	3 7 12	I go check on deliveries  Zee garde wir is in  Toke Air bottle to
04.50	00//	135	04/1	as2)

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

$\mathcal{E}$					9.9418
At Hokel					Josep Graf
242/ 1 5300			LAG.		
Scott Robinson determi Hypt. the fill hime is DAULTY. He is sending	GC. Go fair	o APC	ded liess  Size 17  Thuck for tomore	TARget to get	
Scott Robin the Jankty. He	1525 PACK 44 GC PK + 4RT GO to dell		1626 OX 17 1105pect 1CE PACK TRUCK	1702 Legue base	730 Love TARgu

At FEDEX, They don't Allow picking unkit 0100. Go got Go to FEDEX to get package ( Mik Bose Soom FEDEX to (0.7) On BASE Sett-up Decon S, te 2/ Decon egripment OLIS BROAMMSZ occo heque hotel Tuesday 8150 7880 F 07 0 0830

13 V «Key					
Resulting chromatogram	Air Blank Very Messy Both HAVE IN COMMON	18.8.3 7 18.65 24.5.4 7 24.2 5 301.9 3 7 302.75 110.8 7 106.9 5 4 20 4806,1928 ARRA	Air BlAwll 18.63 299.55 106.32	A.A BLAWK 18.63 28.45 110.55	
10 43	1052	AT.	1059	80))	3
WORTHOR 10 day His: 80 Lo: 55 What we share of pain	Meeting T John Makis, JB	erk assad gesad 61.455	Lets, slope of deilling AREA  Lots & Slope of deilling AREA  6080 B. 103  TRY OUT NOW hose  At 8103. Make 10pm	# 100 pp b B7 EX STDs. Set -up 6C.	
	ch60		0945	1030	

1229 Make Lape 20 fax 20 17240 MATT Lape 20 fax 20 1240 Mt 5, te 21. Rick 4, JM 60 to hokel to fax And use phone	Leave	CALL MAKE ALEXAMER & Gird out what to do with G.C.  Change EVENT SEKEING?  MORE day RUMS  SEKE EVENT 3 to 0.0 - SOOG	5-4 in Manual Sample Lusp is contraminted 1450 hone 5xe 21. Goto 3103
1119 CALL MATT AREXANDER to discuss this. He Recommends: DRY-RUN GC RUN INCREASE OVER TEMP.	1133 DRY RUN ON GC 18.75 110.85 301.95	TNCARASE OVEN TEMP 20 1208 DRY RUN ON GC 541118 AS BOSTORE	1218 Day Run on Ge Szaff.

1603 DRY RIM, THEN OFF ES Sed E3 to 0.0 > 500.0 seco. 507 [1]	CALL MATT ALEXANDER. GURING RUN. Decide to Return	KindA (a) HAECO.	ship men	1708 Dove At FEDEX  (Doxo S.Le 21  [715 QJ Sit 21  1725 60 to 8103	
0 2 0 10	DRY RUN.	1527 DRY RUN, SOT		1552 DRy Hurs. 3 x 0.0.  Chang Court 3 x 0.0.  Bod Court 5 0.0 > 500.0.  A FLAT Live down mildle  of chart.	

DAY 3.1	MEDNES DAY 13 July 1994	BREAK SMS-L (0,7 Les) 0700 On BASE. At B103 to	1 At Site 21 Set up Decor	Weathy: Cool	chunce of Rain. Coal front	0730 Safety Meeting Spin, S, Stow, S.	Slope on hill, chance of RAIN, were of RAIN, wereing of sofely vests, pad-IN
	18-30 At 18103 Aid is symple prop for shipmont.	PRYPARE VOMS SAMPLES SOR	1800 have 8,03.  Go Lo 20 8502 5,40 2/ 20 got 5.14.	5m not	1820 have base 1836 At 46266		Jack Hill JRS

עפ	645 Flow 109 40/min. 0104 Flow 109 40/min. 1000 1000 1000 10000	1,100 ppb BT 100 ppb BT 1160xt Reset 6,	1037 Day Rum to Purga.  Oyle pob BTEX 52d  Oggan Comin is too high  Ooggan Rum to 2  Oosgan Rum to 3  Oosgan Rum to 4  Oosgan	1120 100 ppb STD 1120 100 ppb STD Wot gotting yood Readings Remarke STANDARBS
7	0845 5m bAck on Locations 0845 60 Es FEDEX to get New GC	le mailie	0903 53 At B103, Make BTEX 1907 \$ 100 ppb BTEX 5725 \$ 5726 21 20 20 Les Adviss them of 21	0945 home 21. Goto FEDEX 0954 GC is in. GE B103 1000 AE B103

100 ppb 524.	1.5'-2.0' 10g 8erozene 82 psb Tolvene 6pb	021-025 BH 10-11, '09 ALL ND;	10'-11' Reshoot ALL ND'S	14.5 - 15.0 12g	Bonzewe 73 ppb
1234		0 652)	(316)	13.28 02.	
Len	4124 Junie 20	1 10 300 5 1 1000 20 1 men 2005.	6ard PickuRe 1 V5 = 1000 mV	= 70 9REA to 50 mV5	1 4305
100 ppb 57D Look's betten	Two postd.  Two postd.  Two postd.	Treasuse Air Inchesse Air	PO ppb std Read FINALLY. A Good AREA:		7 [
- ah//	0.5//	002/	8/2/	027)	

1453 100 ppb std 35000 CHLIBANER to benzene E-BENZ & MPXY OUT OF 12070 KAMPE.	1506 100 ppb stc) 2,200 mV3 = 110 mV3	Set AREA At 100	1517 AIR BLANK 22 ppb Bewzene 1517 021-023 BH 105-110	Serzene 647 opb Foluene 333 pob EB-MPXY 137 pob Re CALI GRACE to 100 M
100 ppb BJEN STD Need to Recalibrate 5,809 mVs = 290 Zg = 290	Air BLANK Benzene 38pb	100 ppb std. No 600d	100 ppb std., Looks Great Benzene 91 ppb Toluene 91 ppb E-Ben, mpky 272 ppb	021-023 81-1 10.5'-11.0' 129 Spikes off charet Reduce GAIN to 5
1338	h/h/	1423	1432	2 <i>hh1</i>

	-0-9	<b>-6</b>	en e	a and a second	gradient de la company de la company	
(2)	78 24 24 day	0			900 0	
sed to	1020-1	22 22 22	STEN	B01 103		
, 611 108 1108	4 02/	17.0 K	1,070 BENT	- 022	Benteme Tolliene EB-MPXI	
6.0 - 6.22 6.0 - 6.22 PRINTER	Restant 6.0'6 Berzene	70/ueme EB /mpx) 021-024/B/	01)	021	Ber FB	
1634	1.1.1.1	0011	1-120	SIFI	-	
91	<u>.</u> .		Koll			
, tself			20		9 % 4	
PPM STB. PLOVER!		39.5	-KI-KI	22	900 01	
Ja Po	XB	15/	set.		l l l	
Stb.	std.	PM S.1d. 7, 9 pd m V3	AREA = 50 ml Library Set.	021-023 BH	Benzene Toluere E-Ben, MPXV	
P P W	CAN NOT KARA	PDW 514.	¥ 7	120	12 1- 11	
		0191		1291		

							(27)
9211	1 ppM SZd 13enzene 1,	1,080	900	1281	021-023 BH		
	Toluane	916	200	<del></del>	14.5'- 15.0'	10 ds	
	EB-MPXY 2,	2, 710	g dd		Rendence	900 801	
1736	AIR BLANK			· —			
	AIL NDS			1833	021-024 8H	\$ P	
6/14	021-022 BH	50,	i i	<b></b>	Benzene 6,	6,130 ppb	
	Benzene Toluene EB, MOXY	240 21 900 21	900	1842	pzs		
1800	118 120-120		· · · · · · · · · · · · · · · · · · ·	and the second seco	Columnia EB-MPXV 2	6 F 7 2,010	
		120			Need to Recal	RECALIBRAZE.	
(	ININGER WI	VIPILT.	MIRL-TUNCTION	1959	IPPM BTEX	QLS	
0181	021 - 021 i4.5' - 15.0'	7	ંત			6.6 Vs	
	BENZENE EB-MOXY	105 pp	a a		6,600 mVs 2000 2000	= 33 AREA >	20mVs
يذ أعتفضيفطينه	The state of the s	The Control of the Co	- Albertan de College et de maine, en e				

(29)						
· · · · · · · · · · · · · · · · · · ·				; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		
AT HOTEL						ByOK
2030				1		
	(4X dilution	1,080 ppb 86 ppb 382 ppb	that Adings.	75 1,130 ppb 1,110 ppb 3,400 ppb		eguip ment.
AIR BLANK ALL ND'S	021-024 BH 10.5'-11.0' 14g 25 LL 10 LOS (4X dil	BENZENE TOLUENE AT EBENZ-MPXY	Done w/ samples that had high PID Readings	7EX S	Air BLynk Alk NDS	BREAK down Leque BASE
2/6[	4291			0461	1949	2000

Thursday 14 July 1954 (31)	oboo heave hokeh Break fast (0,7 hr)		0725 6020 Site 21.	SAFE	Shippery conditions  UAtch for exten clothing gething hunging.	JB, RT, KP, SS, BS	0750 Goto Bla3 Decon was: Set-up GC.
	that	5 chance of showing					

	-		an Allenna				73
PREP	PREPARE 1 PPM 4 100 PP	900 601		937	021-024 84 2.0'-2.5'	<b>0</b> ▼	3
5//80	100 ppb std. Aborted Run.	". Used	o fairs to	•	ALL NDS		
E/100	wo defective we	ire needl	o vi	8460	021-021 81	, p	
		or and a second		•	ALL NDS		3
9889 9	GAIN is too high	3/00 600 high.		6560	021-020 BH	201	
5160	Reset AIR 17600 ED 100 PP 87EX STD	ST ST	suc/		ALL NDS		
	977.8 mVs 48.	5.8%		8001	021-021 BH	90 ep	
	Set min are	Um to	2.5		ALL NDS		
	CALIBRATE		mangamagana ganaggan ga	&/O/	021-024 8H 6.5'-7.0'	0/0	
6760	0927 Air blank ALL NDS				ALL ND's	 7	
,							

(35)													
	H Reshoot	١		F01	79 prb		5H 20/ -		H (2.2)	9 dd 001	BH 12.3	· · · · · · · · · · · · · · · · · · ·	
	021-024 BH	ALL NO	021-021 8		BENZENE TOLUENE		1.0'-1,5'	an 778	021-020 8	BENZENE	021-020	ALL ND &	
	1/38		8#11				1158		1209		1220		
	X STD.	201	250	10	- N	8103	103	51 D.	95	1 50 m			
	100 pp B BTEX STD.	Benzene 88 Toluene 86		2	60 Es 5/2 E	Return to 18103	AEBT. At 18103	100 ppb BTEX	924.9 mVs =	Set HREA X	Air bLANK	ALL NDS	
	8701			e e e e e e e e e e e e e e e e e e e	ahel	105-6	0111	1115		A CONTRACTOR OF THE CONTRACTOR	8211		 )

(3.t)				
3H 102	δ.	72	901 t	821
021-018 ( 2.0'-2.5' ALL NDS	13.5'- 14.0' ALL ND's	2 2 2	021-019 BH 14.5'-15.0' Benzene	021-019 BH 1.5'-20' ALL NDS
1330		1350	7071	h1h1
57D CAL 100 pph 97 pph 105 pph 203 pph		About I have had during printing	to hunch	haver Vent- for possible.
BENZENE 87 PP / STD COLUENE 87 PP / STD COLUENE 87 PP / STPP / STOLUENE 87 PP / STPP /	AIR BLANK ALL NDS	CALL HAZCO About GC PRINTER. I have Advance Tope during P Sor hast hour.	Co to Site 21 They have gone to hunch Go to B183.	At B103 PAINTERS HAVE MOVED A FACE PAINTED TRAILER INTO haver. 1 LAKE As much As possible closs not show - up too back Readings
0821	1243	1255	1305	1322

			Agb	666				
33				81.8	/benze	<i>p</i>	<del>.</del> .	50 m U3
3H	728	16 pp	421	102/1	Recollibe.	Brex st	hh = :	et to
021-019 BH	7 6 7	ese.	Benzene	C-Benz MP-XYlene	Need to k	8 9 00/	884.3mV3	<b>S</b>
1525/	783(		13 73		N. C.	1558		
CALL	83 pp 83 pp 83 pp							
BTEX STD	904 601 904 601 900 601	5,0	72		90/		<u>0</u>	
	TOLUENE E-BENZENE MP-XYLENE	AIR BLANK ALL NID'S	021-016 BH	ALL ND .	021-016 BH 6.5'-7.0'	ALL ND:	021-016 134	ALL NDS
17/11		14H1	/Sh/		1503		1513	· · · · · · · · · · /

(4) CA15	100 116 93 pp 8 81 916 18		7 ox	
10g EX STD	85 psp 49 psp 68 psp 133 psp	$\mathcal{O}$	DAGES (S) # (C) o Summing to K o copying purposes. (3103	
021-015 8H 13.0-13.5 ALL NDS	BENZENE TOLUENE E-BENZENC MP-XYLENE AM BLANK	ALL NDS	GC Summing her copying hear (3103)	
NDs 1736 15is 1745	5.15	0181	1822	
Z/ALL N Z/SOR ANARYS.	FOR ANALY		12,9	)
Air BLANK Goto Size Goto Bio3 At 8103	PREPARE 5016 021-015 13 H 1.5'-2.0'	ALL NDS 4-015 BH 5-7.0'	ALL NDS 21-015 BH 10.5-11.0	ALL NDS
8 h9/ 629/ 229/	%0£1	20 HITI	0 52+1	\

(43)					BTEX				RT, 55, 35		75	
1241 S	15 JULY 1994	ze L	t (0,6 hes)	- g	1 ppm 3×d +	5,2e 21	setup for	here	Safety Meating: JB, KP, RT, 3 Bc came ful ARDUND Rig.	11:705 UNICE DAY	Stere the yet skeeves & everua	
601	FRIDAY 15	oboo hoppe hotel	BREAK fASt	0700 At 3103.	MAKE	Cato At S, t		0800 Drillers here	SAfety Me	· Weather Very	0816 Take Stere	
	H.	90		60		£240	-	80	•		hes	
		:			-		:		· 		6.11	
	At Hotel											
	1836		r reconstruction again.						· · · · · · · · · · · · · · · · · · ·			

3					7 7			
D 025		75	50 m/s	: · · · · · · · · · · · · · · · · · · ·		<i>(E S</i> .	ALL NDS	ALL NDS
Ppb BTEX 570	72	20 m /3	AREA ->	LIBRARY ANK	STE Z. SAMOLES.	re Spang	118 f	10 H B 10 S
00/	-6.'	7,5	Mie	Set LIBRA AIR BLANK	6020 Get 36 Return	PREPARE	2.0'-25	5.5'-60'
- 0936				0952	1000	h201 .	67 al	P38
	· · · · · · · · · · · · · · · · · · ·	26. 20.75	26	Ady to	£. I	2.3 w/m		7 64
77	Ŋ	t warmed Not Re	GC, Let	RAMEN RE	this A sho	RMTe: 1	1 40°C 1 430 Se 1 10 70	50 m
13 Ack 19t 21	60 to 13103 At 8103	GC hAS NOT WARMED UN	TURN OFF GC, LET	GC is on and Read	100 ppb BTEX STD: Dis Regard this # shot. Forgot to set gas	Set Flow RATE: 12.	Arah. Time i 430 sec	Min AMER: 50 mVs
+280	0831	<u> </u>		8/60	0925			

(4.7)	Ŋ		100 ppp 101 ppp 101 pp		
BLL NDS	ALL ND's	128 ALL NDS	4 5 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ND N	( hr)
: 2	00	20 0	57b.   5   6  16  120	31	(1:1)
021-026 MW 2,0'-2.5'	8.5'-9.0'	11.0 - 11.5 021 - 026 MW	Benzene Benzene Poluene E-Benzene MP-XVIENE	AIR BLANK 6. to 5:20 At 5:20 21	Leave base Lunch
02.1	8.5	11.0 - 11.5 11.0 - 120 14.5 - 17.0	Benzewe Poluene E-Benzer MP-XVIEN	AIR 36.6.6.6.6.7.	Land Land
1241	1250	1309	1319	1332 1345 1356	14 05 15 12
ND.	ND's	100 pb 107 pb 103 pb	11 ± 12		
770	ALL	699		kes s fax	
12.9	129	48	193 174	SAMP SAMP	,8/3
021-017 BH	7.814	100 ppb std BENEENE Toluene EThylbenzene	lene I.ANK Site	At site 17 Cet soil si Goto B103 At B103 Repare 300	Armhysis
0-120	14.5'-15.0'	100 ppb BENEENE To Luene EThylben	MP-xylene AIR BI.ANK Goto Site	At Set	. J
1049	0011	1124	1135	1154	i.

(b)		-39	
9461	(0,7)	for tradays  bow't Calibr  it will be a  contract falling  will need to	to meet of the standard of the
18 July 8	heave hotel Break fast bet 10E At 3103	Lond truck for set work for set up Gal.  Set up Gal.  yet because it while befork that a hile before straks & I will be for the set while before the set while before the set while before the set with the set will be set will be set with the set will be set with the set will be set will be set with the set will be set will be set with the set will be set will be set with the set will be set will be set will be set will be set with the set will be	v 2 v
Nowbay	8590		
12 37:	e agay my		J.7. 7 hw
eak down S	oz stor	TOTE CLOSE  SECURE  FRT 90  MOLE L	
BRENK	1540 Leave s 1550 At 18/ 12 hord 202 1	イオケき	

Decor Rig Dell	7. EX STD 1. 15 small 1. 10 27.200 mVs 2,200 mVs 200 mVs 1. 100	ALL wb ;
Sections of Continuous of Size 9	Chromatograph Chromatograph Increase Sain LARSE Library 100 Mb BTEX 5 2.2 V5 = 2,	Set hibanay 1 Air blank. Tethana
5000/ 010/ 010/	1035	1009 M
obar. TROUBLE WIT'L  ALEXANDER.  N. AATER.	oto Site 17 to md in toto Site 17 to md in 1810 3 ALL OFFICE MAY Rive. MAYE & Mark to Sandy Rive. Maxe of Sith wot in with whiting on deitlers to ARPINE	all it in Deaph Legue Site 17. go to 51te 17. sae tleke 1 off againment
CALL MARK ESCOBAR.  I R AM MAVING TROUBLE WITH  THE 10 LL SYRINGS.  I NEED MATT ALEXANDER.  I NEED COT.  I NEED COT.  I NEED COT.  I NEED COT.  I WILL COT.  I WILL COT.  I WILL COT.	Set-up Size 17 Set-up Goto Bio3 CALL Office TAKK to Sandy Work Skill Will CALL bACK Liopming on daille	Rightlers MARK it it it is AREA AREA AREA SALLERS SARE They deopted off agents
0.8/3	0400	8.560

(3,3)		100 19 19 26	89 66		Setting		2
	AUL ND	5,				ALL NDS	ALC NDS
All NDS	1	STD 90 //	80 pps		( STA 100 m/s	778	
2	123	1 1		LIBRARY	100 ppb BTEX 2.1 15 => 16	<u> </u>	27 /2¢
0.7-0.5-811	18-012-015	BENZENE	E-BENZENE MP-XYLENE		20 Peb 12 1.7.	Air brank	40 40
	5.5	100 / 8EN 7	E-8	ERASE RECALI	7.1	Air	5.5 - 40
6771	1238	1249			1802	13/3	1322
	-	<del>-</del>	- !	- : : : :		-	-
Z		N DS.	NDś		oles	103	:
20 2	LES	AKK	UTT 1	726-0	5 Pm	HTL N	to get
(7	18703 SAmples	12.9	12.9	17. E	BIO3 It Soil	700	~
5,76		8,4	, B.H	site 1	ot Esait	BH o	5,te 17 5Amples At 18:103
60 to Samples	1896K At Propare	017-016BH	017-016 BH 5.5-60'	60 to Site 17. Soil samples.	BACK At BIO3 PREPARE SAIL SOIL FOR GC ANALYSIS.	017-016 BH	Soil Sack
20							
	7211	1136	46 //	1156	1201	1210	17.20

017-013 BH ALL NDS 2.0-2.5 123 MADRIED 017-013 BH ABORTED 9,5-10,0 123 RUN	15'-100 811 ALL NDS	iene Ne Ank	Barok down GC. Decon Voris PACK Symples for ship went to Lab
TRE WILL SEND STUFF to  CALL MARK ESCOBAR.  CALL MARK ESCOBAR.  Busing RAIN Shower (T-storm)  PID Just wit. Now it doesn't  Run. Cost, Pio company to 1528  See if it can be the	Call Determinator Co. 1537 (coto 5,2 17. Bring Pid 1546)	PIL ND:	017-013 BII ALL ND: 5.5'-60' 103 60 to 5,te 17 to get samples At B103. PREP. SAMPLES
1345	7011	1437	1445

(5)				2 2 S				gá	is Ready	. 7	50%		2003	
	1361	(0.7 LR)	8103	Then	no trs.			0, 2	S. KF	g. Topics	1/0	- 37	SNAKES in	
6/	19 July			GC.		~ GC.	<del>}</del>	1991	8	Site 17. Meetin	. St.	of highting	Sa St	
DAY 9	6/	Legue hotel Break fast	On Base, at	Set-up GC KAMP NOT	66, 00	٠ د	IT FIRES	MAKE	2 8	boto S, Safeky	weath	· Bewale	· 10,4tch	
	TUBBAY	7 0000	0655	<u> </u>		0725		o t so		0732				
	:	,				<u>.</u> .	<u>-</u>	-		-		1		
EDEX	-				·				· · · · · · · · · · · · · · · · · · ·				1.0 he	
, s													:	· · ·
KP 90	8103	hotel.											gulffe	7
RT,	Leave	At	$\sim$	$\sim$									fores	
	8/1/	0141					8-1-2000 P							

53)	74				
	PROPOSALY SE	11	2 NO. 2	ALL NO3	
At Blos. Continue entiberation	GAIN WAS NOT PROPERLY RESEL to 10. 100 pp 87EX STD.	2000 2000	48H 123 sur		48H 125
b		1.9 45 5ct 1	44 AIR BLANK 56 017-014BH 2,0'-2,5' Tolueve	1006 OCT-0143H	1017 017-0148H 7.5'-10.0' 7.0'LUENE
.,60	- 9"4	Syange.	2560	o; 901   90	101
of Sike	. 6 1	10ml Then	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	d and to w	50 Site 17
set-up o	4 × ×	teouble wot dem to keen hope fully Run	office. Tal	Build 100.K	FEDEX Package Goto Soil Samples
Ad in se SAfety 1		HAVING TEL WILL Supposed today, FEDEX	OSLL M. He.	Frankly WORK. BTEX	bote bet bet
osto	080		0838		9.580

£201	_		1143	H8110-+10		)
	bet Soil samples. Back at BIO3			2,0'-2.5' TOLUENE	100 25 25	
	e 50%	4.				
	10.7-012 BH		h5/1	5.5'-6.0'	100	NOS
	2.0'-2.5' 129 TOLUENE 2190b				<b>&gt;</b>	<u>.</u>
			1203	H8 110- £10	ALL	νδε
1	5.5'-6.0'	:		4.5'-10.0'	801	
	Toluene 20ppb			Done with	this Am's	7.05
1.	10000 BTEX STB.	CAL			KP + RT hA	hAVE GONE
	O.Y	100 pp		VOM VIALS.		; 
	Toluene 75 pb	911 25				
		9d 08/	1244	Benzene 151	117 pp	100 46
	AIR 86, A.K.			Totalone E-Rowsene		93 /26
	TOLLIENE 26 pob			www. June	9d1 181	de 851
	HB 210-E10	·		O-Xylene	107 ppb	25
	9,5'-10,0' 14	, 		Weed to	Recalida	4
	Toluene 25 ppb			Eran L	down.	
					<i>\</i>	

1311 AIR BLANK ALL NBS 1322 Goto Site (7. 6et soil sample. 1340 At 8103 PRAPARE SOIL SAMPLE. 346 O17-010 BH 4.5-5.0 123 1400 FEDEX PACKAGE 13 1400 FEDEX PACKAGE 13 1435 Qt Site 7.	5 5 E. 1.1. N.) 5	2	N8 010-+10	SGN JIH
Get soil sommy Rt 8103 Rapake soil O17-010 BH 4.5-5.0 Notel. 6000	F	2	9.5'-10.0'	£21
PRAPARE SOIL  017-010 8/1  4.5-5.0  FEDEX PACKAY  hotel. 60  Cot site 7	£.		017-017 811	ALL NDS
017-010 4.5-5.0 FEDEX hotel.	54N 71	# S1	0,7-0,784	ALL Wbs
FEDEX hotel.		1522	Golo Site 17. Get KAST Soil	Golo Site 17, Get KAST Soil SAmple for
20 S 12	74	965	gove.	אייייי אייראפאפע
			for Amphysis.	epare sampl
Put wew part on	070	1532 6	017-017 BH	<i>Yo1</i>
445 At 13103 PREPAIRE SOIL BAMY ANALYSIS.	oles for		Tokueno	14 ppb

(65)				#-6 has
Logue FEDEX At hotel				u Graghe
CALL 1723 100 pp 1742 105 pp 1742	05 (AL) (OP) 102 198 86 198	169 ppbg	3103	
7EX 570 72 pb 75 pb 65 pb	EX 57-B 906 115 196 98 118		LO FEDEX. LOWE REPEX	
1547 100 pp 87EX 570 8ewzene 70Luene 6-8ewzene 6-	1602 Air blank 1611 100 ppb BTEX Bonzene Toluene E-Benzene	1620. Stut down GAMRAP-UP AREA. KP-RT ARE C DECON VILES	1708 60 60 1	

									7					2		
(+)		: · · · -	4 drays		ob B7E)	· · ·	3116	She is	personme	7 - C				M. T-570	coundings	
<del></del>	A K		5, t.e 17 chesks 4		d 100 pb		17 Kg	mrs.	. 🔅 .	CLEARANCE URILL SITA		ر م		25, 63	3e Aware of Sussoundings	3103.
	FESEX	-d2	forth	403 -40 GC.	1 1 PPM 4	57.Ds.	60 to 5,20	SATIONS MYS KP is noto	-	_		KP ARKIVES	SAfex II	JB, Kr, Kl.	3e AWAR	Return to
	0443 FEAVE	Set Cet	gots 4280	or the Error	030 Build	<i>ن</i> ه	1046 60 t	S.A.	~**			1080 K	1053 SA	27		1055 Rei
	5	· .		) Lansand	weU. 10		<i>3)</i>		-		, , , , , , , , , , , , , , , ,	e:	7/	6011	<del>-</del> -(	
	1661 K	hin)	03 K0	well developms	At 021-026 MW to develope DRILLIAR ARRIVES	well	for charity		AILABLE.	38	developement	set-up be		ick chast's &	Accept Anos	···
DAY 10	20 July 1994	el (0.7 hr)	Lr. C	3	RRIVES KA	N			No MASON SARS AVAILABLE.	Keturn to 021-026 MW		<i>D</i>			Se Accept	
PA	sdAy	hene hotel Brenkfast	60 to 5, te	Supphies	At 021-026 mw Drillar ARRIVES	Beyind d	A MASON JAR	prkure	No MASON	Ketuan t	Done wy well	6.to 5/03 th	deLiveries	11ck-46 6	o Refuse A	<b></b> -
	Wednesday	0090	T		0705 4	0830				2820	1 6760	0931				á

69	walling	100 ppb 80 10b	29 pp 48 98 pp 49 98		777
917 ND3	sae Loca	~ ~ ~ ~	91) Q 6	ERNSE LIDEALY	SZ498. Will
	DRILLEARS / KP & RT for phone Co. 20 Approve drilling	BYE	BTEX	278	rherd
8 0.7-018811	DRILLONES / FOR PAR APPROVE	1238 100 ppb Benzene Teknome Febenzone	1257 100 ppb Benzene Tolyene E-Benzene	Weed &	t with
8,721	Pir		•	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	
	(e. 75 Sex	20 50 ALL ND	SAmples. ALL NDS	ALL NDS	haydu
ر م م	3 V3 BINS = 65	no ky	2016 2016 8016 841	841 10g Site 17	Amples ck at B103 PREPARE SAMPL
At 8103	- 1	Set L Air BLA	100 to 5, the 5, my les 80, 12.0'-2.5'	017-018 BH 45'- 5,0'	Sympole 13 BACK at PREPAM
1058	)		1/3.7	coz11	72 PL

	ALL NOS	ALL NDS			ALL NBS		Z E	Samples All whi	
	5.0'-6.0' 814	0.7-01811	5, 7 5, 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	bet soil symple. At 8103	14 conte sin sample 017-020 84	2.0'-2.5' 129	Get Soil Symples Return to 8103	Prepare 3076 59, 017-020 811 5.5'- 6.0' 103	
-	Selling 1421	105 /431	1,00% /	IN KS	95,4 14.50		oches 1500 4 buck 1507	71.51	
100 ah 87EK ST	5 7	AIR SLANK ALL NIDS	60 to 5,20 17, 6ct SAMPLE	Return to 8103 Prepare sample.	0.7-019 8H ALL NDS	CALL M. Henson to Sird	that, has not arrived buck with him buck	60to 5.2e 17. 6ct 5012 Samples 5top & 9AS-47 CAR At 181030	PREPARE SAMPLES
1309		320	1330		1338	1348		1353	

(73)						Ship (
has thong						
1/exs 5 # 1094	KY					
BASE BARREL	5250	7*%			:	B
TEAVE - Observe	163,0	THE S				The Contract of the Contract o
100	735	20			/ <del></del>	A S
2222	-	<b>8</b>	300	70		
100 101 92 180	, s	·ŝ	100 A 99 B	169 7		
900	ALL N	Mer 10	900	Ppb ALL N		100h
8578 857 857 77 77	1	129	102 102 100 88	141	5.	ваеяк-с
6 87 E eve	'nuk	8//	6 BYEX 50 16 20 16	Ark.	u	8103 #e 17 5.te
100 ppb B Benyene Tolueme E-Benzene MP-Xyleme	Air blank	017-020	100 ppb Benzene Toluene E-Benzene	MP-Xylene Ain blank.	Shut-down Decon Vil.	heave At S.
6 6	236	545	k k	8091	8/9/	£1191

1020 RAIN Laks - up.		1023 Packney from Fresher - Sieuchte 1033 Packney 15 IN Go Eo	Khat it can warm up A white while	1046 Return to 5, te 21 1054 At 5, te 21 WAIting ON daillers.	1100 DRILLERS ARRIVE	Be Aware Acount money	· Be coreful wo becache in	28, 55, Paul	1245 Done moving barrels
Thursday 21 July 1984	hozal Jazal	5 C	0810 Goto Bite 21 to more days.	out Sit 21 - Move alumo . Put paraels at 4 mWs	0820 At Site 21. WAILing ons drillers 20 ARRIVE.	0850 Brillers on Site. Begin MOVING BARRELS.	8/03 K	6930 Back At Site 21. It is paining heavily. DRILLERS ARE WAITING	

$(\pm \pm 1)$	ta					57
ξ <del>,</del> μ,	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					2 7.0
scopti	Set ska					
Source of the so	7 7 7					Short State of the
1535 60ko 1612 6ct 1628 6ct						des
15	f. 1413	7 %	hey	•	-	
if Ky	17-97	3 X	ive. I	Discuss olars for	st for	
40 Sec	3. No k weet to	vot here	RT ARRIVE been Primad	MOPRIS. D 2 work) oly to Hayword	cot chosts	30 31
Ko Blo3 RT ARE d	2000	Bre 8103.	KR-R LAVE B	CALL J. Mo-future (2)	Prepare 16 Komorpo	3
Soko RY Aug	-8 At Wart Gols	7.60 At	7 1345		Pac 20	VRAIN
	8 521	1303	H350	1355		<u> </u>

(bb)			<b>y</b> •/	for	· · · · · · · · · · · · · · · · · · ·	
Jes/ 1994	5 hk		dr 205 67	sol vices	cts to get sections mix	ome. Park
ERIDAY 12	hokel Y-Ast	BASE. (3) ELUCK FO.	SAmpling Le 21. To parky	34 mpt., 205 8/03	Site 19 to 1	bottles  Me Size 21.  54 mple 22.  Move to 021-000 mu CALL Air Products 4  Address.
-HO FRI	· · · · · · · · · · · · · · · · · · ·	6658 000 hond tong 5,000	2 01	<i>6</i> .	Ogos Golo	1005 Move to Aid Ress
						,
					Jan 18	

(B) (B) (B) (B)	sque hotal	103 Truck	Set-up Decow and 24-13 hand Aurek 017-0108H 15-25	Security Afrives & questions our Activities Every thing OK,	Continue 5.te blakdour. Lave 5.te 17. Goto 5.te 18 At 57e 18.	HAND Auger both Sample Cocations Break-down. KP-KT GOLO Sixe 21 XD	I gok Blo3 to sety 66 And Analyze symples	Set-up GL & propose samples. MAKE I PAM + 100 ppb BTEX STDS.
SAtuksay	0070		W Ka	0745	0872	000/		\$ /O/
WW 010-120 0/04102	d clay.	PACK-up stuff in Truck so that we can break for hunch.  Lunch? (0.8-hrs)	At HAMBO to get Key to Site 18 for Mecass over weekend.	Goto Site 21, SAMple 021-026 MU SONE At 021-026 MW	24 SA	Get ICE FOR SAMPLES. At 8103.	$\sim$ 0	2 At boxel. 3 8 10.6 hrs
	1310	1320	//22	1426	1610	1/49/	732	1552 1552

\$018-0068H 1.7' 10g  ALL NDS  107-0106H 1.5'-2.5'  ALL NDS	OLB NDS  A Something regard out chamatageam. Will Restort	Ater. 5.2 2 20 550 RT ARE dolyg.	They ARE done sampling Swamp. Aid in Site Breakdown. Goto Kunch. And.	60 to 8103 At 3103 Recorlibrate GC.	1.2 17-5 SomVs SOEKING  Hir Blank  ALL NDS	7 6 7
1250	1300	13/3	1341	996 1525.		h09/
60d = 80 m Vs 9 AREA 20 100 m Vs	10 m. l	15 to med	10 m.l.	(57b). Ch	STD. CALIBRAZION	Autos som ast
1055 100 ppb BTEX 1,6 V3 3 24 Set 1,15 A1 5et Lubrany	1107 AIR BLANK, 1116 021-009 MW • ALL NDS	1/1/2 0 1/2 0 1/2 1	140 021-026 WM 126 018-006 BH 2	o6 100 ppb BTEX BENZENE Toluene E-Benzene	Mo-Xylene Weeds N	32 AIR BLANK  ALLIND

(85)	1,000,000	41 646	156/-128	901 0161	2 20 Sett	5x 4/42				70/		10/661	10x 6/41e				CAL.	dy 000'		9% £88	1760 11			oo ppb.	
	1,080 196	1,080 106	1,030 11	2,060 pb	25, 100	24 pp	6 pp b	768 00 6	911 020%	0.8-1.3	66,006	2.5 , 109	12 pp	239 666	331 66	432 ppb	87D	935 106	892 1/26	830 166	1,650 pp			40 100	
	Benzeme	Toluene	E-Benzena	omp-xylene	1	Ben Zene	Tohneme 614	Hobenzene 7	MP-XYLENE 1		· Benzene	N8-00-810	Benzeme	Toluene	E-Benzene	MP-Xykene	PPM Brex	Benzene	Taluene	E-Benzene	MI-Xylene	ger blowk	ALL NDS	RECAL, BRAZE	
				•	0 8521	<u> </u>	7.			7/8/		/823		_7			1838				<b>u</b>	1852		Z Z	
10 p	3	12.2		\$01			:	K STA.		<b>X</b> 2		in AREA			. :		ôu.	9.		6,6	910	90	180		
7 monispos		Salment		08'-13' 11	900	215 /26	1,224 pob	I PPM BTEX	STD.	Missed Shot		20 my 1 Min		Such		•	0.8-1.3 104	200	2.5' 10%.	3,551	3,224	4043	10,868	٠ ٧٠	
95 900-120	ALL NDS		ALK NDS		Toluene 7		O-Xykene				IPPM BYEX STD	A \$10%	Setting.	Sed Library	Air WANK	OKE NOS	0 118 200 -810	E- GENEENE	H8400-810	· Toluene	# E-Genzene	· M. P-Xylene		I PPM Brep ST	
120 1.191	•	120 /291	•	1634 018	•	•	•	Che	1650 18	•	1659 1199				1711 Ai	•	810 1261	•	1732 018	•	3	•		42 / F	

1			T COL	1495	es at			ACCU.									
			•													٠.	
(8)				· • · • -			•									12	
	800														(	2/	
	Š			• •			<del></del> :	• = •••				· • ·				7	
	o,:	\$/			o de la designa de debi o												
A. A.	1	i U										\			1	N.	
2		7					·					·				3/	<b>\</b>
7	3/	CO (													<i></i>	Ž	7
	•	)	(												·	A	
	í	7100					. :	•								·	)
•	-	-			-	40		ا م	90,	9,	<b>-</b> g		,			-	
		r			•	J.\\/\	10,	00,	76	4	9		`	÷			
	·		~~	<u> </u>	· ·.	X		1 3	0 0	- 8	<del></del>			1	-		
	· 	\	6			2000	901	90	-8 - -8-	90	900			coak			
	878	3	08-13	del	90,	1.3	921	26	92	64/	16		<i>1</i> 9	ひら			
	BYEX	<b>y</b>		0/ 0/	0651	0.8-1.3					·	:			 }	+	
Lean L	, ,	1 75	018-007BH	\$ 000 p	9	0/8-007 RH C E-Benyene	O-XYKPNE	2 🙀	٠ ا	tene tene	ere con	\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Lyonay -	776			
200	100 pp	AR blin	9/1. 8-00	· Tokuene	0-Xykene	2-00.	7. XX	Renteme	Tokyene	MP- Kylene	0-Kylene	ALL NOS	Sflar	1 ACK			
	··		0 0	• •	0	6 00	0 2	3 8	•		<b>-</b>		35			_/_	
	7061	2687	1923	•		1937	0/161	0			100	7007		2025			
												1					

7" # "P #

# DISTANCES FHOLI SIDE STAKES FOR CROSS-SECTIONING Roadway of any Width. Side Slopes 1½ to 1. In the house below apposite 7 under Cut of fift and under 3 tead 110. The distance out from the sales at his or apposite 11 under Cut of the and and 10. The distance out from the sales at high and the control of the distance out then the sales at high and the control of the distance out then the sales at high and the control of the distance out then the sales at high and the control of the distance out then the sales at high and the control of the distance out then the sales at high and the control of the co

دين دين 43.4 43.4 46.4 47.0 494 524 539 539 554 564 564 44.7 44.7 46.2 47.7 49.2 50.7 50.7 55.2 56.7 Ð 35.6 37.1 28.1 16.1 17.6 19.1 20.6 20 8 326 10.1 41.6 -12 909 52.1 35.4 8.9 42.9 12.5 æ 32.4 7 15.9 609 Le out from Side or Shoulder 47.4 9 35.3 36.8 38.3 593 60 6 v 29.3 323 338 33.8 3 5.3 158 13 13 14 50.3 17.1 90 36.6 3 - 3 - 3 6 - 6 - 5 12.0 Ξ 30 - 9 53 32.1 33.6 35.1 97 456 53 501 60.6 7 20.0 7 23.0 51.5 30 0 5/2 0.62 30.5 35.0 33.5 36.5 38.0 17.0 ld 5 0 07 35.0 50.5 9.7 45.5 S 83 53.0 e 50.55 Chalen 10 0 8 05 5 7 3 13.3 40 B 4:3 24 45.2 43.7 49.5 180 51.0 52.5 54.0 55.5 57.0 58.5 0.02 ¢ 

ALL-WEATHER WHITING PAPER ..

Name filsen 5. Tokkes

Address 8235 Kint Roctus
4100 Nuclap 410 STR 230

Project Outorh ANGB JUH 11- JUH 28, 1984 "Rite in the Bahr"—a unique all weather writing surface created to shed water and to enhance the written image. Makes it possible to write sharp, legible field data in any kind of weather.

product of

#### J. L. DARLING CORPORATION TACOMA, WA 98421-3696 USA

٠

. 1



70 30 Page 5	5.84/2 Begin 5.84/2 Begin 5.00 Table 8 5.64/2	**
7-12-96/ 60 TO STE 21 AU. 40 00 STE WEATHER	60's 1:0'80's 1:0'80's 1:0'80's 1:590'ce 1.590'ce 1.590'ce 1.590'ce	Chew Ashing Town S.T.
0602 Leave L 0760 60 To 50 110 All: We OU WEATHER	Cotto R. T. S.	Ogoo Twin
/age 4		
		; ; ;

130 R. Tolles Sterns 3000	1205 R. TolkesTakes 1. Steely Lel leading 21-02384 2. J. Rawing Brocks 37.5 Respires Zue 2.5	1230 R. Toppes 72/65 P.S. Reading & LEC. Breathing Eur	1310 R. Talens Sapus J.	1430 R. Tonees den & Beass Sleeves
7-12-94 Page 6 0930 R. Tokkos Calibrates The LEL MX 251 5N# 9408279-099 PENTANC 0.75%, C5.412	(Row Bayins To Boke Note of 212 of 16 16 16 16 16 16 16 16 16 16 16 16 16	K. Patchard, J. Mork.: 5 Attan Sape, 14 Od: Urry 12-15pt 57ect Toe Boots, hare hat, Vest Est plugs.  N. Johns Cacks water bour	13.20 worker lavel Then de con worker lived Mr 4-013 pm 1010 R. Torkes deen & Spect Sporn.	1050 R. Tours Takes D. Johns Takes Let 20.9% 6.9 fm Bathing DX 20.9%

7-13-94	OLOCO Leart NoTel To go car	purcy cloudy	203 203 2/19/ 62 2 70'S	0102 pal: ve on 5.74 21	ora 5. Byld Conduts Sport	0743 Deiling Chew begins 70	0941 R. Tolles TAXES P.S.	P.J lassing Brothing Zore 25 pm	Cx 22.9
75-21-1	1503 R. Topers decons seass Sleeves 1 Spc 3 Spoon.	74 tes P. C.	2-c/000	1 8	1625 P. Tolles 0	ne least	1700 world is cons	1721 Lo to langed 103 + put Les	745 Les Ta Le teat Crousss La Jules A Jules

1508 26 20 26 20 20 20 20 20 20 20 20 20 20 20 20 20	
2451 K. 101463 CECCONS SULT  2025 R. 101265 TAKES P. 10 Page 8  2. Lel. S. N. 494032 79:099  2. Briefly 202 2.1  2. Let Cood 4 CK 2.9  2. Lot 2 Lot Activities 302.412503 48 25.0077 les.  (1105 Deep Activities 302.412503 48 25.0077 les.  1358 Let Cood Antices 90:79 m.  (1112 Take Cood Antices 90:79 m.)   L.e.C. 600 0X 20.9	



0811 Klave Saferty And Health Maeting. 0840 De en Activities goireg 3921 74 Ko Breathing 2020 with 0943 DeCon Act. J. +. 1 5 50175 0,3. Ox 20.9% 750 SUAL LEWE 100 ppp m 6071 408 30a-412503 1128 Take Pid bu OK 20.9% 000 127 R. Tollers 7-15-94 mode C cano 0110 V

2. Tokees 7-18-94 Laye 17 0600 Leave NoTel 0650 Herin AT Chays 103 0715 Segin To Laye Up	0735 (Al: Seated P. d 5W# 48961-282 Markel DoFern; water Elwiroussettel _ Lottelmonts 412503-48	5.75 # 17 Up deen Aug ou 5.75 # 17 Reges 56ever 443	Kigh "	1034 72Ke LEL AN BERTHING 20NC BRATHURG ZOUF .C LEL 000 OX 20.9 % 1116 Delay Activities 90.79	1236 Tate Lunch Beak
2. JORNes 5 7-15-94 1207 Dh:11ets Begin Constantison 1303 Jake Busythy 2002 + 2.e.l. 1304 Jake Busythy 2002 + 2.e.l.	15 Coo . 632	1556 ALLI. volut Hangal Brings. 103. 1614 Do Rivse ATE BLINES. 16.48 & To fee GX TO 16.48 & Deliver Supples	and the same		

120 74th beathing Zone And Lel. 0000 20.5%

Sterthing Love - 20.5%

Oct 20.5% 1048 Tale lal + Barthing 2018 0x 20.976 Parell on ing Up The 0750 ATEN 54-7 42 K 3836 Activities 50:00 O600 Leave ASTEL 80e47h: mg 0658 ALL: VZ R. Toleves 7.19.94 14:4 イスクシュ 8540 1500 0350 7001 Roin And Lightening. 16 14 Unload TRUCK into Longer 1314 5hot Down Down pour Ox 76 22C. 1715 60 76 xee 75 xee 75 xee 75 xee 76 xee 7 1528 156



1230 60 5 Couch

1333 Auzur on Site 17

1363 Delm Activities 50:19 00

1365 Take Beerthing cone

1366 De con Activities 50:19 00.

1406 De con Activities 50:19 00.

1435 Take Brathing cone 40

666 Do on Activities 50:19

1435 Take Brathing cone 40

666 Do on Activities 50:19

14116 1018 De cas Activities 70:39 020 1048 De cas Activities 90:35 144 Deco deticities 50:19 or Aposth: 14 2000 -22.8" . 2 Le L 000 0x 20.8". 11.13 De Con Act: Uties 50: US By: 23 1125 Tate Basarhing 22NR 7-20-94 14. Topkes विष्युर य र weather harry closely Cladity
Cloudy
Cloudy
0915 Delon Bailed and Repe
0931 Leave Site 021 well
130:140 Day Callons lawoud Teap ph Can. 2600 Case Note ( 1250 21 UL 7.92, FT BH Total Look 20.23 14. Volume = (6.0408) (2"). 84.6.79 Well= 29ACCODS 505 OBIZINE STANTED BAIL! M w 021-026 16. Tokkes 17-20-94

wotek. Decon Action ties 0940 Bag N 70 SET SIKC mest 500. ACE'VE 47 Ow W Recon leque 750/2 0630 0000 1880 8701 Ŭ 200 de con also pro 1536 Beg. b. To R. TORGES 10 15 Km 8/14/8 0261

pusq: ng Mw 021-009 ing our mand pi. 0948 Ake 0 8 2 1/2 8 0815 STall You tend say Conde 8570 1205 1320 1230 133 0000 0738 8500 Page ale 7-21.94 BoThes for 1238 Leave 1230 , buy Supplies R. Tomes go And

Delan Activities 70:19 To Sir Up ables Begin To Back down Ow 5.72 2, 12 m 0809 De.Co Auges 5.72 18 K. Torres 3726 Apre. V. 0743 | Beg: 5830 depine Leave 0000 8590 6080 phoo 1060 211 7 17 Sinte 120 7. 30.94 Arrive Ar 5.72 シトなり ARRIVE hated Laure Showed. 1739 1437 2171 1649 0151

Take notablerap + 15to 90:00 1475 Do Rinschttes ton 7-25-98 Begin To Polege 1028 Purgues BLOOKS. Jak. Sup lies S. Tokkos 1220 1146 1206 hon' 1358 5230 \$ 828 6 350 20 Are; ve Tokkes 1331 STARTE 1340 1630 6/271 7251 1535 1586

103 of Soil Supers LARAN Site 47 5.7 Aneile AT 1.40 /46 p.c lelg legue dispose 55 gal. Serve -1415 1121 269/ 117/ Carrie Ampar 10 haline no s. Su:10:14 240. des DROP 1508 16/6 734 2/11 18.96

## DISTANCES FROM SIDE STAKES FOR CROSS-SECTIONING

In the liquie below opposte 7 under Cut or full and under 3 real 110. The dissance out from the side stake at left. Also, opposite 11 under Cut or fill; and wider 1 read 16.7, the distance out from the side stake at right. Roadway of any Width. Slide Slopes 115 to 1.

the site state at left Also, and under 1 read 187, the unit of the state at left Also, and the state at left Also, and the state sta	
and the distance out from the side stake at 187, the distance out from the side stake at 197, the distance out from the side at 1911  ORANGE STAKE  SHY STAKE	
SOF STAFF	

ii.	ا د. ا	Caff	0	-	2	n	-	ĸ.	9	^	89	6	2	=	2	5	7	15	16	-	82	61	50	21	22	23	2:1	25	5ę	27	58	53	F.	E -	35	33	7	35	ş	?	Ē	Ş,	ç
	9.			5.9	4	S	7.4	6.0	10.4	119	13.4	149	164	17.9	161	50.50	22.4	23.9	25.4	6 92	50.4	29.9	31.4	32.9	31.4	35.9	37.4	6 10	\$	919	43.4	91.9	- =	47.9	1: 67	808	52.4	813	55.4	8 94;	28.2		- 5
	8		1.2	2.7	4.2	2.5	7.2	8.7	10.2	11.7	13.2	14.7	162	17.7	19.2	20.7	22.2	23.7	25.2	267	202	29.7	31.2	32.7	34.2	35.7	37.2	38.7	40.2	41.7	43.2	44.7	462	47.7	49.2	50.7	52.5	53.7	55.2	7	58 2		612
1	7	94.	=	2.6	-	20		86	10.1	9.11	13.1	14.6	16.1	176	18.1	902	22.1	23.6	25.1	566	28.1	29 6	31.1	32.6	34.1	35.6	37.1	38.6	40.1	41.6	43.1	44.6	19	47.6	<del>.</del> <del>.</del> <del>.</del> <del>.</del>	50.6	52.1	536	55.1	20.5	- HS	59 G	1 19
	0	or Shankdor Stak		24	3.8		6.9	8.4	9.9	114	12.0	14.4	15.9	17.4	189	504	21.9	23.4	24.9	26.4	27.9	29.4	30.9	32.4	33.9	35.4	36.9	38.4	39.9	414	45 9	44.4	45.9	4.74	48.9	50.4	51.9	53.4	54.9	1.84	57.9	59.4	6.09
	ç	ta c. She		23	8 5	S	6.8	69	96	113	128	14.3	15.8	17.3	18.0	203	21.8	23.3	24.0	26.3	27.8	29.3	30.8	32.3	33.8	353	36.0	383	39.8	41.3	42.8	413	45.8	47.3	48.8	503	51.8	53.3	918	7 95	5, 6	603	60.8 60.8
	7	Distance out from Side	9.0	2.1	36	5	99	1.8	9.6	Ξ	12.6	14.1	15.6	17.1	18.8	20.1	21.6	23.1	24.6	26.1	27.0	29.1	30.6	32.1	33.6	35.1	98.6	38.1	39.6	=======================================	42.8	44.1	45.6	47.1	48.6	50.1	91.6	53.1	5.16	5	9/9		909
		ance out	0.5	2.0	3.5	50	6 5	9.0	9.5	0 =	12.5	1.0	15.5	17.0	18.5	200	21.5	23.0	24.5	26.0	27.5	290	30.5	32.0	33.5	35.0	36.5	38.0	39.5	41.0	45.5	44.0	45.5	47.0	48.5	500	51.5	53.0	54.5	9	57.5	69.0	60.5
	2	Dist	03	1.8	3.3	4 5	63	7.8	8.3	10.8	12.3	138	15.3	16.8	183	10.0	21.3	22.8	24.3	25.8	27.3	288	30.3	31.8	33.3	34.8	36.3	37.8	39.3	40.8	45.3	43.8	45.3	997	48.3	49.8	51.3	52.8	543	:	57.3	88 B	C 09
	-		0.2	1.7	35	4.7	62	7.7	9.2	10.7	12.2	13.7	15.2	16.7	182	10.7	21.2	22.7	24.2	25.7	27.2	28.7	30.2	31.7	33.2	34.7	38.2	37.7	39.2	40.7	45.2	43.7	45.2	40.7	482	49.7	51.2	52.7	545	25.5	272	5.8 7	60.2
			0.0	1.5	30	4.5	09	7.5	06	10.5	12.0	13.5	15.0	16.5	180	10.5	21.0	22.5	24.0	25.5	27.0	28.5	30.0	31.5	33.0	345	36.0	37.5	39.0	40.5	450	43.5	45.0	465	180	49.5	51.0	52.5	540	:	0.73	585	0 09
11		· Ŀ	-	_	٠.	_	-	~		_	70	,	-	_	٠.	-	_			_	_	-	-	_	٠,	_	_		_	`	-	-	_				-	_			_		==

### Federal Express

	iter	611-110
""  " " " " ALL-WEATHER WRITING PAPER "	Label mister	- 003-/

Name.

Address

Phone

**Project** 

"file in the flain"—a unique all-weather writing surface created to shed water and to enhance the written image. Makes it possible to write sharp, legible field data in any kind of weather.

a product of

## J. L. DARLING CORPORATION TACOMA, WA 98421-3696 USA

			$(\frac{1}{2})$	
	CONTENTS		Weather Plann, 500 , Lan	1
PAGE NO.	REFERENCE	DATE	of function	ilust.
			to hudy	7 77
			Truck, Kertiil Tuck	
		-	of la OFTE (11)	(.)
			fall fin	
			Rulgat.	
			CEC IN	
			gos mined at an Carre	
			100 17 17 19 19 19 19 19 19 19 19 19 19 19 19 19	
!			(2) Rome & KI Certification of the Contraction	
			HAT I	

Defected 101/194 (3)  (3)  (3)  (3)  (3)	(2) Boles PID of water Court (1) Boles ( wells ( who Hy)).	John much (CITCA)	(ANGRC) to swite streets of Duleth purject > Left massive in wine  Niked by heye to Hungo 103	from Cycli ) feren  Sur pure Minker  for unland syplics. (13)  Chined at Dano Bldg.  Jopin by keys to yete at Berg 18  John Sue End.
1010 Departed	(2) BAL: PI (m)	1 103.5 (1) ROX TUL 10 give.	1043 (ANGRE) ANGRE ADUL	H3K/115 gft Chan C
1/4/94 Hendery	Service office;  Service office;  Nand-duy, tet	ite quality of the color and interest of the color of the	theirs of the their of the the their of the	
45 arined	Cyc Cyc	, , , , , , , , , , , , , , , , , , ,	15 Cluine (	Meel Weel

(S)			1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (
1/94  dir do el  seluxorio (1.1)  ride (3.5)  (16.6 0 26-	1/ NE 28 MS)  1/ NE 28 MS)  27 28 MS)  27 28 MS)  1/ NE 28 MS)	25 - 1 - 10   10   10   10   10   10   10	521 -00 523 8 645/ 523 645/ 652 5080 5080
10/2 less to		160 (627 cd / 624 (624 cd / 624 )	VOC VOC SYOU TIPH SASK
1 all	12 ker 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	25 X5 "1 25 X5 "1 3000000000000000000000000000000000000	17 15/1 MSD
15.7	27 (1) 27 (1) 27 (1)	1666 1610 1600	(1) 7.5% (1) 7.5% (2) 7.5%
State of the state	y w. p. w.	this less	water water
	hereing of the bay year in the sale of the collection of the colle	Richlaminted when steed when shows a steel de de steel de	holable rate.  Nivar wath pitalle wate.  (157N Type I)  ext.  postsharely like year.
Trefulfy [2]  The trent of the form of the	thrush of histerd history in the following and to collice in the following and to collice in the following and the follo	Did langited phistory  24 cele de gent office ape de  24 cele de gent office ape de  20 ce productiones stated  bein!	Aire noth reflect
			ath Baller
9 3	255	130	

THE THE PROPERTY OF THE PROPER

idwading 10/5/42  Cleuch ; co;  winder num cum, caller  John Alern his spring is  anang his next his	Buch omitered a suct Luse lite Pat Notionari about of hyest agent, Northwest on Mist, Northwest on Mist, Northwest on Mist,	Conted Sent Wenter Judiced  OPTEDH Sent Menter Judiced  New Coll Shins  New To Mann Jus  Sent Mann Mann Mann Mann Mann Mann Mann Ma	Carryster from Sele (E.
Willer Widowaday Willer Church	Biely of millace Liste City where Might on Northwest on Northwest on	0 3	
2) dinit	1 x 20 00 10  1000 100 , T X  0 9 12 8 9 6 4 1/3  100 12 8 9 6 4 1/3  100 12 8 9 6 4 1/3  100 12 8 9 6 4 1/3	Con	(1005
10/4/94 Depriced Site 1/ Lettingueshe ( ) 20 20/1 006 502 02/1 006 502 02/1 - 00 1/502 02/1 - 00 1/502 02/1 - 00 1/502	The solution of the solution o		1 they I worker!
100 S22	6/1/4/6 / 1/4 C / 1/4	/	

(3) /3/10 Calledal equipment (9) (9) (9) (9) (9) (9) (9) (9) (9) (9)	1 - 2, 6 2004 Little 1 will  (200, 1000 1000 1000 1000 1000 1000 1000	FID SS por	1500 (alleted (2000) 1900 1910 1910 1910 1910 1910 1910
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Last Destrolly	ather site of the solution of	1215 (Church of the field of the field of the fill of

1670 Denich 10/5/44 (1) 1640 devived at Hangar 10 1645 (2)	chapitalished	000 mych 1289 646 1.3-1,-1 018-007 18112-1.3-1,-1 018-007 18112-1.3-1,-1 018-007 18112-2,1-2,7	
1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 1900 1 19		The state of the s	

	ie L And 3/	cd -	9mes
about wien mingh	obsums ("il all he or or he shows to me hair a section of the sect	12 pupae for general state of the sound state of the state of the state of the sound sound sound to state of the sound sound sound to state of the s	Mobilized to USI-109M DID UTIN
10/6/94 20/6000 -1 20/60000 -1		Damples COUNT M COUNTES Soy CO 304 CO	15/2/14 0 0 %
10/10/10	Ata Cott	to but	Mobilized to University Such your Comments of Such your Colors of the Co
12 to	Cherry The d	15.00 100 100 100 100 100 100 100 100 100	mot Back
	2		9 35
	1	(17) - (10) 111 (101 atto) (1) - (10) 111 (101 atto)	142 mg
(60)	1	11/2/1/6/27 11/2/1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	1.6. 1.9. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
10/6/41 5 <u>2</u> 5 5 3 4		200 311 200 311 200 311 200 31 200	nited all the property of the
7 2 7	FIFTH KELLY Refund Stand John Stand	(17) - (1) - (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
13 / he wit " )  20 / he i ( Could )  100   Lean ( a)	Tirifich	10 27 ( 27 ( 17 ) 2/1 ) 1 ( 17 ) 2/1 ) 1 ( 17 ) 2/1 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 ( 17 ) 1 (	10000000000000000000000000000000000000
7/			
((3) (124) 705	57 t	3 (1)	32

Time Could Temp lot (6,5) church (6,5)	(017- 6.5 120 821 6.60 : Centy 1022 7.8 170 825 1007 clairly 1022 1992.	(3) 40. 4 (3-46-46-46) (5) 40. 4 (4) (5) 40. 4 (5) 40. 4 (6) 5 (6) 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	(630 W. C. 4 83 (187012) T.D 14.79 (1216)	(10 (1) Autor) (10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
July (collapse etch ?)	pays of of the field  Collected  Lead on page of of	Calibraid Hy Duc Sirring of 1/107 Conducting 1/000 as fem USI 316-7	(121 - 11/1) (670 ) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4) (1/4	(2) (8,51) (0.16) - 1.4 pd. (2) (1) (10.16) - 1.4 pd. (2) (1) mercing themsoneter (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)

5 dried 2. 10/6 (6.65 wing).  5. dr. 14.0 1000 (2.31) 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2		(allecter dependente 121-010AMW-Cer-2 Temp. 14,5 Cont. 974,6 1-15 Cont. 174,0 22) Upp. MM Unique 1,16 W. 50024 86,1	-1) 20,38 ""  Variable = (2,73' (s.165) = 2.19,2.  welk = (14,73') (s.165) = 2.19,2.  Kath litedell.
(6) Startell they thank they they are they they they they they they they the	Coll Carty Coll Carty Coll Carty Coll Circles	100 - 100 (100 (100) 100 (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100)	$V_{cell} = V_{cell} $

10 (19)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100)  10 /100	では、ないのでは、
Colomical Colomi	
(6.32) (6.32) (1) 45, 116 vind (100) (2.02) (3.02) (4.02) (4.02) (5.02) (6.02) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03) (6.03)	
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	BANKANANANANANANANANANANANANANANANANANAN
	special property of the second

		· · · · · · · · · · · · · · · · · · ·	4 Mars 4 / 2	. was the of other	o e e e e e e e e e e e e e e e e e e e				TOTAL VICES MINISTER	· · · · · · · · · · · · · · · · · · ·	
		:							;		
			· · · · · · · · · · · · · · · · · · ·								:
The state of the s											
:				· · · · · · · · · · · · · · · · · · ·			,	:			
			<b>į</b> .				• •		-		-
		0.1 7 6.03	۲ : : <u></u> -	$\frac{1}{1} \frac{1}{1} \frac{1}$	C. Charles	< 					
	100 100 100 100 100 100 100 100 100 100	- -	5 12	15 13 6/12 6/13 6/13 6/13 6/13 6/13 6/13 6/13 6/13	`	الم الم	<u>.</u>	$\mathcal{C}$		/	ėÜ
_	المنظور أحد			ر خز ر	الم الأرديديي الما	10 36 VI					Lary Frankell
€			76 st.	iest tr	'	נרולין	geren en e	·*			1

of atheya Particety

Opteen expice to acquire
ant act Fiday from
effice in The hick
and act fame, at
the hotel amine at
the hotel amine at
the hotel amine at
the hotel amine at
office until not peare the in a netting inter (1015)

o howed at head purition
to need tept Stove
Walnewetz to cototained
key for Filler 105 Digust bete l Breakfast and maning nesting deviced at Duberth ANG 18 How Gyal, A.
Thesty Crice near
Kather hitekell!
Hozped by Base livel
Engineer - Educe Berg by Base Curl athlicen Merino 5/2/95 K Lown Priced Tuendaig 010 715 ? ? Tulker or Base Security. and morter well lendance left Delect ANGB and the section of both Der Much , Dr. 6.16 Deshy er serverag innered at mellet itile o. ) taked bury 59/1/62 12/5/-1-4/15/-1-4/15/-05/ C8 37 / 

Cuilled Beth Court

(MACA) to discuss

the cutour for TPH

in Sites 174 & 1

in Sites 174 & 1

with Cute (GA/90) contra pette geotechnical lab- is in succe in the contract season is loc falo (216) 74/1-929 Called Duilers to Liebby over Str. 2T + 21 with Buch Suy Culled paraly mark Facilian (Contect) about the Wismain E. R. J. D. Ro Mother doceture lotation Jenney C been meeting at to confirm that the 21/1/05 1525 1330 -1430 1300-Finish & shring of Sund.

The ey supplies.

Returned to Delited 5344.094/03 Called Uneuclin Engineery - Sharld Destry Coursery. The Syelf fr. Sites 26 4 17 Chrised at Site multed attach Times (Dillery) the mosey 118020-121 1181-627 811 Airhill # 5 Lilian int 100 Metho. 5/1/012 AVCO Linech 2011



Detry Greenear Bether British Stated Ollo-Cilubit Collection 5-7 pareus 6t 3.5 " BLS-mark1.5 anned at Set 2 6 the zort frunkating drill Dullark finnshid Encountried backeley Kithleen Meins Kingelan Calified hy and hugers. County man-tax meter 5/2/95 36 PID 0 LEL 1252 BOWLOGE O LEL ( Nother Producted RG PLD, 1047 1127 125-215-215 955 (300 Enveronmental Proximando Co. Uneutan Engenesis Testing Fume Hura Coar Mantan Lot # 45 8 33 - 4/1863 -45 derontanination presenting of diell ing and augers or orde such y blar 144 Karlien Mount will demonstrate Watrainty alast dums. The 24 chuins that were Ducters setting up there my and angles to teller to lypal. to the intermenting 9/0/659-001 5/21.15 Universi in site 1 ath Baden **宝** 633 450



Called Russell Casor 100 5 124 Called Russell Casor Collected 0.5-25 Collected 0.5-25 Collected 0.5-25 Collected 5-7 Collected 5 16 pour - batteries. Dieter believe be ming Durkhale Ogn 0 LEL 20.4 6 02 Mare 40 025-005134 hieler have eneanteed water (oflected 15-17.1 5/10/95 6,5 pm frither Cabriel said That the funes onelled nauceathic but he felt fine last right to the They to writect. Paul Wheeler (ANCRE) at 215 in Michigan with French Lieu felt Collected 0.5 2.5 Collected 0.5 2.5 Co. Collected 5-7 Co. Opril 20,5% 02 message, bereated at 065-007 BM 20. 5 % Or 10 letted 10-12 5/10/95 - ndd 0

0 LEL Por 20, 5-02 Oz le Open 20,406 O. DLEL 20,406 O. Mired 021-026224 Collected 0.5-25 0 fpr 0 march to 021-02784 collected 4-6, oppm Revollecting 0.5-2.5 0 Life 20,5 % 02 welleted 0.5-2.5 Backole Offin 20.4% 02 Calletted 18-20 865 2.8 from "Merter 4-61 5/16/45 Kath Piram 1448 Borchole Bowhole 1355 **ベデ**1 1425 1350 dupos do per peradires much advances to the surface ~ 15 825 are water (i) collected (6-20) of Lield Or Day 24
of Lield loghorsh.

More of the 265-004 BH
Collected 0,5-2.5 Dillers determinatin OFF 10,4% Or 20-221 scheited 5-71 JJ70 bom O CEC Opported 10-12. 0 % Keenvery 5/10/95 Keth Putchet Copper Co 2 d. K. " 0 2. collected Dorthyle. Brahala 20, 1135 /OC; 95/

T/16/95 (73) animed at lake.
Suzerior (aboutonies)
(p) soil surples
(1) Dupluste
(1) ms/ms)
(00. No. 12592 4141 Collected 8-10 66.5

Mollide collected.

Morel 021-0288#

Collected 9-6 which experse investe investe (1530735790 (4) Soil Sangino isother, encartised lately four whele, four whele, the warms and altimed and bours in additional and bours Dulles genting Jose 12 to adjustness Irwied of Federal west of mobile auch 5/10/18 plan andrist # 1517 1538 300

Ospar OLEL 20.5% Oz Colleted 10-12 Ratur Cuerning Kathleen Meine-Kathy Retrited Collital or 5-2.50 8.5 fri Pranse Open after sure DLFL 20.5 % 0. Pin 20,500 HOSTAY MUESAS AND 919 (west 2 LEC 20, 5%, 1 919 (west Broud to 025-0084) Collected 0,5-2.5 Pm 20.5% 02 Openridd 5't Kothy Frithert 4.5 ppm 2/12/18 9.6 Pgn Burdule Buhalo Barbara-Ballola 850 843 388 023 COP Kall Andreas duyous as-per proteduras. MX25/ ad per peoredura stated on page 20 of this field togswop. liveather: Surmy cool -high 50's, leady 436 ; wind chief 23° F', windy; NW Hatil I Safety moting lield legister, I Dillera decontinuending Anniei at Publick ANG Morathan Colonial for Bynd, fridest Lathryn friedest Calibrated PIO 4 5/17/95 Letty Creening Ipmie Tulua lited norday wit ww a.n.n.e. 700 31/5 73/ 370

Oppra Collected 4-6/ Part Moder encentrus Moved to 017-015 BH Collected 0,5-2.5 Backere Offer 20.506 02 8+06 OLELM 2014 0-65 7204 12014 0-65 5504 12014 0-65 (+t) 1430 water its followers 20° Centres, Box back of OLEL 20.5 % O. 017 -0 240H Welested 0.5-2.5 20.5 % 02 More 4 + 017-02-134 Collected 0, 5-2, 5 Collected 4-61 5/14/65 Klety Rischer 0 por 0 1270 Borehiste Sohl 1337 1350 02/1 1417 Vietera quited horaholes , setting of st site 17 Division left Duduth, Aven 0 2 ft 20,5% 0. purp 2 d of the field Brehole Orim 70,5 % Or. Dielos decortaminating sollettes 16-20° builing a ruger as to multilize to Site (7 leth, Patalett Collectus 5-7 56/14/5 per puecedus Coffee Co Bushell Bullate 1004 1020-1 1100 1130 1130 co/i 1015



Tunducer (7.10 Start pluy test -injection at 025-05/mid started withhouse for our Stopped to tool down.

Stopped to cool down.

Leen in sun too univeled ors-odnied 870C+2100 #102. 40 pm 8 TOC + 10 STOC + 10 STO Kathleen Menno Kathy Paitebath 5/18/95 (81) Nesty Greenway at Site 26 collects prombuster semples WIL. 46,00,55 (07) lory, K Wy Indust stopped test 1337 1345 ch 21 1515 dilo 7//راد a 815 Aff he wish inform proof to prove the proof 10e Byd, f. Reenway Righlern Morino Kethn Pitchett a 24-hour Junaisol Tim Buck to confirm Called Rosell Choo Theolog + Wildnesdy Stated that there were By for Bynd , B. st. or pay to of this Lield (Kathlern) Thursday 5/18/95 Later Superior Lab-000 Inalytical they though puluth Nesults for no. ident the idense -Weather: Summy, of S. U. W. Chronied at 36 taining results ANGO (0)

Weather ! Survey 50-603

Cuts amise of article. ANSO

Ratings of Deserving

Ash seen mends

And Steen mends

And Seen mends

And Seen mends

And Seen mends

And Meet or of the seen at 1530 of 1550 of 1550. duil his safet meeting the the Katholen merins Parie Taura Parie Taura Proved Porty Proved Collected 0.5-7.5 25°6 Georgy Josephett Franky 5/19/95 712 117 Translucer 1/65 Trues Otatic Trueston Struct injection teal - 1625-00 Strapped tost Stopped test Depart Duluth ANO13 strated withdraw Coth Fritzer 5/16/05 1534 1638

for SVJC, (H. (SPL) (WD) NR. 6RO/Dr.2 (3) 40 ml. Will HCR SV3c (6170) (1) 1 & anter 1/4 (7470) (1) 1 & for, HN/03 1/3 30 most Lute Superior Late Duilers goith lab-poil boung with 306 Contolite powder of 97% neat cement 1027 Culletted 0.5-2.5 water encounted 15% Receivery 1035 Recollected 0.5-2.8 collected equiprent simplects — split. Offin Duplieds welected ath Pricial relinguish 501/5mg 2/19/95 // 30 -/230 //46 0/// encaniered () Com OTT-032847 Moved Ho OTT-032847 Calleter 0,5-2,5 sheeted years witer encountered.

Maxed to 017-030BH Cottested 4-6 tons Recallanted 0,5-2.5 encarded Offin Biel casmi Recollisted 0.5-7.5. 10 (letted 0,5-7.5" Diplica collected for noited of 017-92984 Offm 617021 BH td 0(7-02984) Coelected 4-6, >6/k1/S 976 925 45.57 0/9

No 0 - 937 - 6MAN

2508-560 - 1-800 - 1-800 - 120 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 - 810 Project Scientist SAN ANTONIO, TX 78229 Joe Byrd, JR.

CAPI, Stephen WABROWETZ FG/LGPT, BLdg. 240 Dalath 1315-197 4625 Deuce U-

Dalath, MNS5802 deserved 505 W. Saperior Mistreet RAdisson Hotel - Duluth 1868- +2+(817)

J. L. PARLING CORPORATION PACCER, YAS BRITT BUSH USA

-	7- 1	,,o uca -c	·	wastiye ey alk may	e mamainiliseite	THE COLUMN	o, ranga	Strage Shift days	dy recursion from	g page of the second	
(63)		e e e e e e e e e e e e e e e e e e e	٠, ،	800	300	50 Sec	1 33 Rux	·	7.1		1
			7 2		2 5	× A	brange	କ	* DR	- A	12/2
7	\$	(5)	2 - 2	5		.x.	A B	- K X	8	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2 2
DAY 16	1 × V	<i>y q</i>	50 a	2	10 L	87	leve.	87.6	Leve T D	# # # # # # # # # # # # # # # # # # #	876
	-2	Khas	4 7 6			PPB	1-Rux 0-X/2	e Xo PPB	- Adfe	68	3 2 2
	es pay	10 Se	Sail Bail	GAIN	Injection 60 Oven	ANALY	No	7,m 100	5	200	200
	WEDNESDAY OSYS LAW	0635				0726		0742		7570	2180
					·.	<del>, , , , , , , , , , , , , , , , , , , </del>					
				<u>.</u>	, ,, ,, ,,						a a a a a a a a a a a a a a a a a a a
-					•	•		٠		· .	
	• •	•						-			
<b>-</b> .					,		K				•
	•										
					Metal Color						

1.5

\$			ζ	M.		,	36					Ø Øt	9	,
5td	9001	12 pp	20/06	1 pob	3 / 20 b	1 60 6	3006	3,00	200		200	2.5	2 ppb	300
<u> </u>			7,0							Ž		3H as-		-9
my poo	1R 13LA Benzene	Toluene Mp-xylen	D-XYCON	Benzene	Tokuene MP-Xylau	o-xylene	Toluene	E-Bentone	0-xy Lem	R 81A	Den Famo	21-0286	Toluene 5-Benzon	MP-Xylewa
830 16	A 2480		9 0	-				• •			• •	- •		
						C								
												;		
									•					
					0		1							•.
					ح		<u></u>			-				
	10 PPM BTEX Good Run: S	OBYS AIR BLANK 1 POB	10 PPM BTEX Good Run. S AIR BLANK BENZENE Toluene	10 PPM BTEX Good Run. S AIR BLANK BENZENC Toluenc PIP-XYLENC OD-XYLENC	10 PPM BTEX Good Run. S AIR BLANK BENZENE TolueNE OD. XyleNE OZI-OZTBH BENZENE	10 PPM BTEX Good Run. S AIR BLANK BENZEWE TolueNE O-xyleWE OZI-OZTBH BENZEWE TolueWE	10 PPM BTOX 57-b  600d Run. Sct Library  AIR 1819WE 1 pob  Toluene  0-xylene  83,16  021-027 BH  Vib  021-027 BH  Vib  0-xylene  Toluene  31 pob  Toluene  50,06	110 PPM BTEX 600d Run S AIR BLANK BENZEWE Toluene 00-xylewe 021-02784 DEN-276WE Toluene Toluene Toluene Toluene Toluene Toluene Toluene	10 PPM BTOX 57-b  600d Run. Sct Library  11 8242  8602600 12 606  7060000 12 606  00.xylowe 20/96  00.xylowe 31/96  00.xylowe 31/96  00.xylowe 31/96  00.xylowe 31/96  00.xylowe 31/96  00.xylowe 31/96  Februshu 3996	10 PPM BTOX 57-b  600d Run Sct Library  812 ANK  82 ANK  75 Luene  75 Luene  75 Luene  76 Ppb  83 116  021-027 84  9-6  70 Ppb  70 Ppb  70 Ppb  820 Ppb  921-027 84  9-6  70 Ppb  70 Ppb  70 Ppb  70 Ppb  70 Ppb  8-10  70 Ppb  9-8-10  9-8-10  9-8-10  9-8-10  9-8-10  9-8-10  9-8-10  9-8-10  9-8-10  9-8-10  9-8-10  9-8-10	10 PPM BTOX 57-b  600d Run. Sct Library  8ENZEWE 120b  70LUCNE 120b  021-02784 4-6  70LUCNE 2019b  021-02784 4-6  70LUCNE 310pb  021-02784 8-10  70LUCNE 35pb  10pb  021-02784 8-10  70LUCNE 3ppb  6-XYLEWE 8-10  70LUCNE 8-10  70	110 PPM BTOX 57-D Good Ruw. Sct Library AIR 13LANK BENZEWE 12 Ppb Toluewe 83 118 021-02784 4-6 189 Toluewe 31 Ppb Toluewe 31 Ppb Toluewe 32 Ppb	10 PPM BT X 57 LLERRY  812 3192   1 ppb  75 Luewe   12 ppb  75 Luewe   20 ppb  021-027 BH 4-6   ppb  75 Luewe   3 ppb  75 Luewe   3 ppb  75 Luewe   3 ppb  75 Luewe   1 ppb  021-027 BH 8-10   ppb  76 Luewe   3 ppb  76 Luewe   3 ppb  76 Luewe   1 ppb  77 Luewe   1 ppb  78 No. xylewe   1 ppb  78 No. xylewe   1 ppb  78 No. xylewe   1 ppb  76 Luewe   1 ppb  77 Luewe   1 ppb  78 No. xylewe   1	10 PPM BTEX 57 LIBRARY  80000 Run: Set LibRARY  800000 12 Ppb  706000 12 Ppb  706000 12 Ppb  83 Ppb  90.XY6000 1 Ppb  90.XY60

65)	T			100 orl	100 (06	200 (seb		8/		~0 . 0	Replines
Sb WW ti		N W N	37cx	6	70 79	5 - 2		05-25	21 200	39 60	5-7-7 SK, NO
<u>-1</u>	00-xylene 021-028BH	Toluvne • E-Benzene • MP. XVI ons	0 o-xylene	בי אה	Toluene E-Benzeme	mp-xylene 0-xylene	AIR BLANK	• E-Benzene 025-0126H	• Benzem • Tolnewe	• E. Ben tene • O-XYLene	025-012811 A lot of
	9,60	- a	0958	<u>)</u>			1013	1034			0601
	1	,			â. A	ş	i e				# \$-
	· ·					· ·		•	· .		·
			:		· ·	S					

ال المالية

		A Company of the Comp	W #1	1 26 VAM #1		
					(89)	<del></del>
		001 1441	O PPB BTEX	x stb	aAL	ا ا
		86	Benkene	1 do 20	90 001	rnc
	·	701	Toluent	900 26		んにな
		E- (	E-Benzene	۳-		س <i>ر ح</i>
		œ ₩	MP-XYLEME	 20 r	200 Ap	: <b>د</b> :
	<del>.</del>	0	o-rylane	93 Pa	100 606	
		1509 AIN	AIR BLANK			m ulau a
		_	BONZENC	1001		e veli a
	_	1521 01	H8 h20 - £1	0.5-2.5	69	4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4
		•	Benzeme	9//	0	8-15-2 0-15-2
	-	•	E-Benzeme	9668		
	-	0	O-XY Lene	13.5		
		10 2231	17-024BH	,9-,h	bat	
\		8	Benzene	4 80	<b>3</b>	<b>4.18</b>
			Toluene	9 0	-	
		2	•	44 PPb	\	
		10 0101	Hahzart	8 01-8	136	P2 ( ) ( )
		1546 017	017-0248H	0.5-2.5	104	
		8	Benzene	9000	Ь	-
		70	Tokuene E-Benzene	4001		,
	mandring em ann		Asu	1		
				1 72		

	90	96	Est.	80	
ene 44 45	12,766 0.5-2.5: 3 pp b	4-6.99 8 9 9 8 9 9 8 9 9 8 9 9 9 9 9 9 9 9	34 ppb 98 ppb 05'2.5' 13 ppb	4-6, 496 4-6, 396	
E-Benzene	MP-XYLENE 0-XYLENE 017-0238H Bertene Toluent	E-Benzeng Mr-Xyleng 017-023BH Benzene Toluene	E-Devzene MP-XYLene OI7-OZBBH Benzene Tolueno	E-Benzene 017-028BH Benzene	E-Benjerk Nu ed 110
	0 6591	17130	0 4271	1736 0	Con timued

ì

A. S. Saland

AIR FLOW 15 NOT WORKING RIGHT.
CALL EIS to see , f Exergit.
CAN TROUBLESHOL. TALK to M. Alexander.
Fieldle w/ GC.
It wont go. Coll EIS.
Ron is out. Walting on
his eall back FIRE-UP GC. Build 10 Ppm, 1 PPM, 4 NO PPB BTEX STDS DRIVE KP to 5, to 17. BACK @ 8252. 216 EZS. Attempt to backflush. (0.6) H. MAY 45 60to 5,6x17 to Brok @ B252 CALL EZS. hepre hotel Bresk fost On Bose Louck

MEABURENT CONVERGIONS

1634 Km2	2	g	2							ē								ę,	(8.8)
3	er charath is	Combinated	Kenna hets	th has	- - - -	thirts.	10.		V.16.79	httpan	Court La	[abote)			11.5	:	•	Para Cur	2 (1) . n. n. tu
۲ ا	;									 -			- - - -			~ • +.		ارو انعین	
MULTALY BY	25	95	ş	6	3 %	3	2	, //	ş	53	3	支.	46.5	3	2	3		3	Ž
- T		20	-	-			0		۶	-				-	3	2	4.4		经
ئند ج	1.1.1			Ĭ	<b>:</b>		Ĩ			<u>.</u> خ		Ý.			1	Š		à	ö
§	1		I	Ĭ.		Ī	1	Ž	B	į	ŧ	ŧ			Î	ł		1	Ī
ਰੋ-ਫੁ	17				\$	į.	ď	Ē		í			ð	4	Ė	¥			
	Ž												Ž.			7			
			X	- 6		<i>2</i> :	K.	ç	4.5	-	数	÷	4	-	**		-		

A. Kathleen Herino (K.M.)

4100 NW Loop 410,5tc 230 San Antonio, TX 78229 (210) 731-0000 1-800-677-8072

Duluth SI Sites 26, 225 Radisson Hotel (218) 727-8781

Troughert dan Books Foardamppojert a belle e Withsop Fobsory (Fig. 1997).

Professory of the Communication of the State of

J. I. DARRIGG GORRIORGOTOR To code, Way 20420 Brow USA

Alexania metari to (025-005 BH West hotel, breakfast 025-027817 0630 270 0835 0835 0840 0850 0935 0935 6940 1001 0201



Luyses 5140 L Sumple @ Mal Superior Fab-ENO 01-074 16 May 55 1400-00 1800

550 pole (20-12 115-11116)
18-20
18, 2he down site
50 tup at 5ile 17,
Lu 1216 (2).5-2.5 2-25-48
Sample (2).5-2.5 2-25-48
11 4-6 5-5-5 446 HD 520- LID) 03. 017-024 BH Sangle @ 5-2.5 Sample (0,5-2.5) More to Moreal the 1333 3



Cho results now-, Dies will come ) Wheneles from yes 18 May 0545 0745-0815 0830 0630

1800 TRICKS CAN WHITH El Carrier

More To 617-02984 Nove to 1017-032 BH Sanza @ 5-25 Road Mone 19 May 95 0649 A 032 0920 0925 ÓQQI

en-to Radison LUNH Suy Tist O25-032MW Pack supplies and semples 19 Way 95 1100-1800 1200-1345 1500-1800 0881-0081 1830Operational Technologies with 4100 NW Loop 410 STE. 23

Duluth ANG 1315-197

Arrivo at base Set up decon.
prepare for day's drilling.
Health and Safety meeting with
drillers and Optoch crew. Copying complete. Observe
Break for lunch
Arrive at Site 1) to check
Stakes
Arrive at base. Prepare for
Das-003 MW.
Segin decon (see 19.1)
Decon complete. Break Thursday 5-11-95 Leave motel
Depart breakfast
Arrivo at base Holebooks 1100 1205 0460 5180 0060 Espe pg. 12 Satety mooting with Optech crow. Return from lunch. Break for lunch drillers completing well. Move Depart breakfast Arrive at base Set up decon, get ready for drilling at Site 25. Jecon complete Check on Job it Site 26. Wednesday 5-10-95 Resump decon Begin de con 0061 1755

Derty Brankies

lown every Thing

LPare

16 50

Monday 5-15-95	0550 Leave motel of the Obto Depart breakfast Ob 45 Arrive at base Set up decon, other	0800 Eginderon (see p. 1) 0930 Health and Sately meeting	130 Break for lunch Resume Jacon	1300 Return to base Resume decan	was dis LEL al	155 Decon couplete. Break down	17th Arrive of Fedex 1750 Leave Fedex	Long Inthe Contries
	(0550 Leave motel (0640 Depart breaktast (0650 Arrive at pase, Calibrate Hydacs	(0705 Health and Safety neeting with	1915 Segn decon (see pg. 1) on site 25 boreholes		1735 Leave For Monday. 1735 Leave base 1730 Arrive at Fodex	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	X ST	

. Set up equip dinbo dn Wednesday for day.
Health and Safety meeting with drillers and Optech crew,
Begin decon (see pg. 1)
Decon complete. Break for funch
Return from lunch, Resume decon Depart breakfast Arrive at base, Set up decon, Prepare Tupsday. 5-16.95